Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

THM and reactive transport analysis of expansive clay barrier in radioactive waste isolation

Guimarães, L.D.N. and Gens, A. and Sanchez, Marcelo and Olivella, S. (2006) THM and reactive transport analysis of expansive clay barrier in radioactive waste isolation. Communications in Numerical Methods in Engineering, 22 (8). pp. 849-859. ISSN 1069-8299

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A fully coupled formulation combining reactive transport and an existing thermo-hydro-mechanical (THM) code is briefly described. Special attention has been given to phenomena likely to be encountered in clay barriers used as part of containment systems of nuclear waste. The types of processes considered in the chemical formulation include hydrolysis, complex formation, oxidation/reduction reactions, acid/base reactions, precipitation/dissolution of minerals and cation exchange. Both kinetically controlled and equilibrium-controlled reactions have been incorporated. The formulation has been implemented in the finite element code CODE_BRIGHT. An application is presented concerning the performance of a large scale in situ heating test simulating high-level nuclear waste repository conditions.