Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A high-throughput microfluidic system for the simultaneous formation of droplet-interface bilayer arrays

Schlicht, Barbara and Zagnoni, Michele (2013) A high-throughput microfluidic system for the simultaneous formation of droplet-interface bilayer arrays. In: 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2013). Royal Society of Chemistry, pp. 946-948.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The ability to form artificial lipid membranes in a reliable, high-throughput lab-on-a-chip format has the potential to advance membrane protein studies and the development of sensitive molecular biosensors, ultimately impacting on the development of novel and low-cost synthetic approaches to drug screening. Existing methods are limited in terms of their automation, throughput and ease of use. We have developed a microfluidic system that allows the formation, alternation, desired positioning and long-term storage of arrays of droplet-interface-bilayers (DIBs). By encapsulating the desired cocktail of liposomes and metabolites into phospholipid-stabilized water-in-oil (W/O) droplets, hundreds of DIBs were characterized using fluorescence-based assays.