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ABSTRACT

Non-intrusive appliance load monitoring (NALM), also
called load disaggregation, is a method for isolating the
energy consumption of individual appliances from an overall
household energy consumption. Traditionally, NALM tech-
niques are based on measuring several electrical parameters
at high sampling rates, which increases the meter cost and
communications and storage overhead. In this paper, we
propose a low-complexity disaggregation method based on
Dynamic Time Warping algorithm that uses only active power
aggregate smart meter data, captured at a low frequency, for
training and disaggregation . Experimental results are pro-
vided for three households using data collected during two
months, showing which individual appliances were used and
when. Average recognition accuracy of 85% was obtained.

Index Terms— Smart Meter, NALM, Dynamic Time
Warping, Disaggregation, Load Signature

1. INTRODUCTION

As the deployment of smart meters has already started, a lot of
focus has been put on maximizing benefits of smart metering
in terms of providing a simple pricing system and effective
energy advice. To achieve this, it is not sufficient to have in-
formation about the energy consumption of the entire house,
but it is necessary to break this consumption down to indi-
vidual appliances. Non-Intrusive Appliance Load Monitoring
(NALM), also referred to as NILM or NIALM, is a technique
used to disaggregate household’s power load without the need
for individual appliance load sensors.

Load disaggregation is beneficial for all parties of the
power network, as it can provide information about the status
of an appliance (faulty or old), the changes in the load de-
mand, even the pricing policy of energy providers. For this
purpose, there is a number of research works that propose
different NALM algorithms using a range of sampling rates
(generally in the order of kHz) and different electrical pa-
rameters for disaggregation. However, as commercial energy
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monitors provide sampling rates less than 1Hz, more focus is
required for accurate and robust disaggregation techniques at
low sampling rates.

In this paper, we propose a novel load disaggregation
method validated using real data acquired using an energy
wireless monitoring platform (EWMP) [1]. Active power
data are acquired at sampling rates in the order of 1-10 sec-
onds and sent to a dedicated remote server in the cloud in real
time. The proposed disaggregation algorithm is of low com-
plexity and is based on Dynamic Time Warping (DTW). The
algorithm is tested using energy consumption data gathered
for a period of two months from four different households
following their everyday routines. The obtained results are
competitive to those in the literature obtained at much higher
sampling rates, demonstrating that DTW is a promising tool
for power load disaggregation. This paper is organized as
follows. Section 2 gives relevant background on NALM.
Section 3 introduces the proposed machine learning disag-
gregation method, and Section 4 presents the experimental
setup and performance analysis. Section 5 summarizes the
key outcomes.

2. BACKGROUND: NALM

NALM, first proposed by Hart at [2] in the early 80s, refers
to disaggregation methods that aim to isolate the energy con-
sumption of individual appliances from a total household en-
ergy consumption without the need of individual appliance
sensors. The total power load is sampled at a sufficiently high
resolution ([3], for example, samples at 1Hz), where each
measurement is a vector of measured components, that de-
scribes the load. The two major load signatures that are used
in literature are (i) one-dimensional load signature [4], com-
prising only the active power and (ii) two-dimensional load
signature [5], comprising active and reactive power. Note,
however, that other features can also be used for disaggrega-
tion, such as voltage and current waveform, electrical noise.

Many improvements of the original proposal of [3] have
appeared recently. For example, in [6], Real-time Electrical
Appliance Recognition (RECAP) system is based on an en-
ergy monitor attached to the main electrical unit, measuring
active power, power factor, root mean square and peak current
and voltage, and employing Artificial Neural Networks for



classification. In [7], circuit-level energy measurements are
used together with histogram thinning and Bayesian infer-
ence for recognizing small appliances, though the proposed
method was tested using circuit-level measurements (with
few test appliances) and it is not clear how it will perform
in a home environment. In [8] a custom-made single point
sensor was proposed for identifying the usage of resistive and
inductive electrical load using transients; data were collected
at ≤ 100kHz and ≤ 100MHz and standard machine learn-
ing techniques were used for events classification, with an
overall accuracy of 85-90%. Similarly, in [9], ElectriSense
was used for identifying appliances that do not generate
transients; classification was done using a KNN-based clas-
sifier and the obtained results show a mean identification and
classification accuracy of 93.82%. ViridiScope in [10] is
a power monitoring system that uses existing infrastructure
and sensors for sensing ambient signals from the appliances
and a model-based machine learning algorithm is used for
sensor calibration, and power consumption per-appliance was
detected with an error of less than 10%.

In [4] a factorial Hidden Markov model was used for dis-
aggregation of active power load, with 1 minute sampling
rate, using aggregate data and models of known appliances
to create the signatures. The obtained accuracy is relatively
low, i.e., accuracy of detecting microwave is 53% and tumble
dryer is 69%. In [11] appliance frequencies were used for ap-
pliance recognition and motifs based on a temporal ordering
were extracted. Both research works used the REDD data set
from [12], which has data sampled at 5 sec. Supero in [13] is a
wireless sensor network, that combines light and acoustic in-
formation together with smart meter data and disaggregation
using a K-mean unsupervised method for disaggregation. The
above disaggregation methods were able to disaggregate ap-
pliance activity using low granularity, but they do not provide
sufficient robustness.

Targeting at power load disaggregation using smart me-
ters that are (or will be soon) present in average households
(measuring active power only at sampling rates in the order
or seconds or minutes), in the next section, we propose a low-
complexity NALM algorithm that for the first time uses DTW
for clustering.

3. THE PROPOSED DTW-BASED
DISAGGREGATION ALGORITHM

The proposed disaggregation algorithm is a time-series based
disaggregation approach that operates on windows of mea-
surements obtained after edge detection and followed by clus-
tering. It comprises a training and a testing phase.

During the training phase, aggregate active power data is
used to create a library of appliance signatures (windows).
Note that this phase is required whenever appliances change
(i.e., addition, change or removal of appliances). The appli-
ances are only classified using customers’ daily diary or by

cross-referencing the data with individual energy monitors if
available. In the former approach, no two appliances should
run in parallel during training.

To isolate appliance signatures, edge detection with adap-
tive thresholding is first performed. Only readings exceed-
ing the threshold will be represented by a signature window.
The threshold is automatically adapted depending on the min-
imum value present in the readings. High thresholds, on one
hand, reduce the number of windows detected, avoiding small
and unidentifiable windows, leaving only large power con-
suming events that can be more readily labeled as specific
appliances, but on the other hand, remove possibility of de-
tecting low-power devices, such as TV and lap-tops.

After edge detection, windows of events are created. A
customised Dynamic Time Warping (DTW) method is then
used instead of classic clustering, as in [3], for comparing and
grouping windows from daily profiles and identifying unique
load signatures. DTW is ideal for comparing vectors of differ-
ent lengths, with non-identical values, and is a very popular
tool in speech recognition (as seen in [14]) and lately in data
mining. In the context of smart grids, it is used in [15] for
clustering load profiles of electricity customers and in [16] a
hybrid Hidden Markov Model and DTW algorithm were used
in order to categorise residential water end use events. How-
ever, DTW has never been used before for NALM.

Given two windows of possibly different lengths, DTW
performs a non-linear mapping of one window to another by
minimizing the distance between them via dynamic program-
ming. DTW is more effective in our problem than more con-
ventional clustering, such as k-means or Density-based spa-
tial clustering of applications with noise (DBSCAN), because
the duration of appliance usage can significantly vary due to
a change in appliance settings. Windows are matched to each
other using DTW, removing a window when a match is al-
ready in the library. Therefore, a database of unique windows
(class representatives) is formed.

The input to the testing phase is a time-limited reading,
such as daily smart meter reading. After edge detection, each
identified window is compared to each of the library windows
using the DTW algorithm and labeled using the best match
from the library. The output of the DTW classification is
a soft value (minimum distance between the testing window
and a window from the database). One example is shown in
Figure 1, where solid (blue) line shows windows present in
the library, while broken (red) line shows windows obtained
in the test phase. We have a match if the accumulated distance
[14] between the signature in the library and the one obtained
during testing is below a threshold.

A correction step is finally used for separating appliances
that might have not been distinguished correctly through the
DTW algorithm. This step performs a check on the feature
values at the instant before and after the detected appliance
window. The distance between these values and the relevant
start and end values of the window are compared and the min-
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(a) Washing Machine
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(b) Dishwasher
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(c) Microwave
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(d) Toaster

Fig. 1. Examples of appliance identification, database signatures (solid line) and detected signatures (marked line).

imum distance is compared to the thresholds defined for each
used appliance. The final corrected identified appliances, to-
gether with the associated timestamp of the start of the event
are the final output of the algorithm.

4. EXPERIMENTAL SETUP AND ANALYSIS

4.1. Experimental setup and evaluation metrics

We test and evaluate the proposed disaggregation algorithm
using actual smart meter data from three households, which
provides sampling rate of 6 sec. For the training phase, we
use one week’s worth of aggregate active power data, which
does not contain overlapping or simultaneous operation with
other appliances to build a library of signatures for expert
classification. The validation and evaluation of the proposed
algorithm is performed using the diary record kept by the
residents, which were also used for classification during the
training phase. The individual monitors were measuring ac-
tive power from a wide range of typical household appliances,
e.g., kettle, microwave, toaster, washing machine.

The evaluation metrics used are precision (PR), recall
(RE) and F-Measure (F-M) [17] defined as:

PR = TP/(TP + FP ) (1)

RE = TP/(TP + FN) (2)

FM = 2 ∗ (PR ∗RE)/(PR+RE), (3)

where true positive (TP) presents the correct claim that the
appliance was used, false positive (FP) represents an incor-
rect claim that an appliance was used, and false negative (FN)
indicates that the appliance used was not identified.

4.2. Performance Analysis

The proposed method, as described in Section 3, requires an
adaptive threshold in order to perform edge detection. The
choice of threshold is governed by the desire to disaggregate
high load appliances; we use a threshold of 500 W. The al-
gorithm provides as output the name of the appliance and the
timestamp of the event and matches graphically the in-test
operation with the library database. In Fig. 1, we provide a

visual representation of some signatures, where the start time
is also apparent.

Figs.2 a, b and c represent the obtained accuracy per appli-
ance and house for both precision, recall and F-measure. Note
that the appliances presented with 0 % accuracy, were either
not available for testing in the specific household, or there was
not enough information through the consumer’s daily dairy
for classification and evaluation of the specific appliances.

According to Fig.2c, dishwasher was recognized with
high accuracy 90.91 % in House 1. Microwave was the ap-
pliance with the higher performance as for all houses the
accuracy was more than 84.88 %. The obtained accuracy for
House 1 and 3 for kettle was more than 93% and the recog-
nition of electric shower was more than 87.38%. Toaster was
recognized with accuracy more than 75%. Washing machine
was identified with an accuracy of more than 71.42%, as at
some cases it was mismatched with dishwasher operations,
as the washing cycle of both appliances is quite similar, see
Fig.1a and 1b. This was also apparent for the dishwasher in
House 2, where the dishwasher was identified with accuracy
79.15%.

According to Table 1 the accuracy for all metrics is more
than 82.18% averaged over the three houses, with the average
F-M of over 85%.

Table 1. Total Results
PR (%) RE (%) F-M(%)

House 1 99.11 83.37 90.56

House 2 89.38 82.18 85.63

House 3 100 91.04 95.31

The resolution of the monitors used was 6 sec which is
relatively low compared to similar works as in [8]. Our pro-
posed DTW-based algorithm was successful in recognising
appliances with high consumption with accuracy over 85%,
which is a sufficient accuracy especially for aggregate data at
low sampling rates [18] and is comparable with the 85-90%
accuracy in [8] and the 90% in [10], where sampling rates
were much higher and the energy sensors were bespoke.
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(a) Precision Accuracy (%).
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(b) Recall Accuracy (%).
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Fig. 2. Representation of the accuracy metrics per appliance for the tested households.

5. CONCLUSION

The paper proposed a solution for disaggregating real data us-
ing exclusively active power data for both training and testing
at a low sampling rate of 6 sec. The proposed DTW-based
algorithm was successful in recognising appliances with high
consumption with an accuracy over 85% comparable to other
proposed NALM algorithms in literature. Future work will
focus on determining the limits in ability to detect devices, in
order to isolate devices with similar active power and appli-
ances with lower consumption, such as television.
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