Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

SOI based electromagnetic MEMS scanners and their applications in laser systems

Brown, G. and Bauer, R. and Lubeigt, W. and Uttamchandani, D. (2013) SOI based electromagnetic MEMS scanners and their applications in laser systems. In: Moems and Miniaturized Systems XII. Proceedings of SPIE . SPIE, Bellingham. ISBN 9780819493859

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

MEMS scanners are of interest for their potential as low-cost, low operating power devices for use in various photonic systems. The devices reported here are actuated by the electromagnetic force between a static external magnetic field and a current flowing through an SOI MEMS scanner. These scanners have several modes of operation: their mirrors may be rotated and maintained at a static angle (up to ± 1.4 degrees), scanned rapidly (up to 500 Hz); or may be operated in a resonance mode, at the device's mechanical resonance frequency (∼1.2 kHz) for higher rate scanning. The use of these scanners as a Q-switching element within a Nd:YAG laser cavity has been demonstrated. Pulse durations of 400 ns were obtained with a pulse energy of 58 μJ and a pulse peak power of 145 W. The use of an external magnetic field, generated by compact rare-earth magnets, allows a simple and cost-effective commercial fabrication process to be employed (the multi-user SOI process provided by MEMSCAP Inc) and avoids the requirement to deposit magnetic materials on the MEMS structure.