Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

New maximum power point tracker for photovoltaic systems exposed to realistic operational conditions

Di Vincenzo, Maria Carla and Infield, David (2014) New maximum power point tracker for photovoltaic systems exposed to realistic operational conditions. IET Renewable Power Generation. ISSN 1752-1416

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the outdoor environment and under real operational conditions, photovoltaic (PV) systems are affected by several parameters which cannot be considered constant, principally PV cell temperature and incident radiation, and neither of these will in practice be uniform across a PV array or even an individual module. This last aspect results in non-standard IV characteristics that can exhibit more than one local maximum. The challenge of the maximum power point tracker is finding the true maximum power point (MPP) in the face of all the variation and complexity the real environment imposes on the PV behaviour. It must do this quickly and effectively so the algorithm which controls the DC/DC converter that controls the PV system terminal voltage and thus its operating power point has to be fast and precise. This study proposes a new algorithm that is demonstrated to be highly effective in tracking the MPP under real operating conditions.