Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Measurement of the temperature coefficient of Young's modulus of single crystal silicon and 3C silicon carbide below 273 K using micro-cantilevers

Boyd, Euan J. and Li, Li and Blue, Robert and Uttamchandani, Deepak (2013) Measurement of the temperature coefficient of Young's modulus of single crystal silicon and 3C silicon carbide below 273 K using micro-cantilevers. Sensors and Actuators A: Physical, 198. pp. 75-80. ISSN 0924-4247

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper reports on the measurement of the thermal coefficient of Young's modulus of both single crystal silicon and 3C silicon carbide over the temperature range spanning 200-290 K. The thermal coefficients were determined by monitoring the change of resonance frequency of micro-cantilevers as their temperature was reduced. The thermal coefficient of Young's modulus, 1/E · δE/δT was measured to be -52.6 ± 3.45 ppm/K for silicon and -39.8 ± 5.99 ppm/K for 3C silicon carbide, agreeing well with theoretical predictions, and also with experimental values that have been previously published for temperatures above 273 K. This work has therefore expanded the temperature range over which the thermal coefficient of Young's modulus has been measured to below 273 K and towards the temperatures required for low-temperature military and space applications.