Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A simple technique to determine the anisotropy of Young's modulus of single crystal silicon using coupled micro-cantilevers

Boyd, Euan James and Choubey, Bhaskar and Armstrong, Ian and Uttamchandani, Deepak G. (2012) A simple technique to determine the anisotropy of Young's modulus of single crystal silicon using coupled micro-cantilevers. In: IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) . IEEE, Piscataway, NJ, United States, pp. 389-391. ISBN 9781467303248

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper reports on a simple technique to measure the anisotropy of the Young's modulus of single crystal silicon using a coupled cantilever structure fabricated in the silicon. We demonstrate that it is possible to determine the Young's modulus of five silicon micro-cantilevers, whose orientations range from 30Υ to 55Υ to the wafer flat, by measuring the resonance frequencies of just one single cantilever of the coupled structure in a " perturbed" and "unperturbed" state. In this work the perturbation of the coupled system was achieved by shortening one of the cantilevers using focused ion beam milling. The resulting Young's modulus values from this experiment agree very well with the theoretical values with a difference of less than 2.5%.