Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Micromachined scaffolds as primers for cartilage growth

Angeli, F. and Connolly, P. and Uttamchandani, D.G. (2006) Micromachined scaffolds as primers for cartilage growth. Micro and Nano Letters, 1 (2). pp. 66-70. ISSN 1750-0443

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Research on the growth and monitoring of cartilage cells in a controlled microstructured environment is important because of the consideration of how the microenvironment affects the cells involved in cartilage regeneration has been neglected to date. An experimental realisation has been demonstrated of biocompatible microstructured surfaces of controlled topography, which have been formed in biocompatible polyimide (Kapton) and in synthetic bioresorbable, epsilon-polycaprolactone (PCL). Bovine cartilage cell growth has been achieved in vitro on the microstructured surfaces and the retention of chondrocytic morphology has been investigated. The results demonstrate that PCL and Kapton microgrooved surfaces can act as primers for cartilage regeneration and repair in vitro or potentially in vivo, by retaining chondrocytic phenotype and enhancing cartilage formation.