Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The use of fractal geometry in the design of piezoelectric ultrasonic transducers

Mulholland, Anthony and MacKersie, John and O'Leary, Richard and Gachagan, Anthony and Walker, A. and Ramadas, Sivaram Nishal (2011) The use of fractal geometry in the design of piezoelectric ultrasonic transducers. In: 2011 IEEE International Ultrasonics Symposium (IUS). IEEE, Piscataway, NJ, United States, pp. 1559-1562. ISBN 9781457712531

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The geometry of composite piezoelectric ultrasonic transducers is typically regular and periodic with one dominant length scale. In many applications there is motivation to design transducers that operate over a wide bandwidth so that, for example, signals containing a broad frequency content can be received. The device's length scale will dictate the central operating frequency of the device and so, in order to construct a wide bandwidth device, it would seem natural to design a device that contains a range of length scales. The objective of this article therefore is to consider one such transducer design and build a theoretical model to assess its performance. For the composite geometry a fractal medium is chosen as this contains a wide range of length scales. Numerical results of a theoretical model are presented. They suggest that this device would have a three-fold improvement in the reception sensitivity bandwidth as compared to a conventional composite design. Finite-element analysis provides information on the effect of poling on the device's performance. A preliminary experimental investigation was undertaken, with a Sierpinski gasket fractal transducer design, and good correlation between the simulated and experimentally measured operation was observed.