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We investigate transverse symmetry-breaking instabilities emerging from the opto-mechanical
coupling between light and the translational degrees of freedom of a collisionless, damping-free gas
of cold, two-level atoms. We develop a kinetic theory which can also be mapped on to the case of an
electron plasma under ponderomotive forces. A general criterion for the existence and spatial scale
of transverse instabilities is identified; in particular, we demonstrate that monotonously decreasing
velocity distribution functions are always unstable.
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The spontaneous emergence of ordered states from ho-
mogeneous initial conditions is a preeminent feature of
nonlinear systems driven far from thermodynamic equi-
librium. Since the pioneering work by Turing [1], it
became clear that a variety of nonlinear physical sys-
tems can spontaneously break spatio-temporal symme-
try as the result of instabilities to infinitesimal perturba-
tions. Typically, perturbations at a given spatial and/or
temporal scale become unstable when the amount of in-
jected energy exceeds a threshold value. Such a sponta-
neous self-organization manifests itself in many branches
of physics: plasma instabilities, for instance, play a ma-
jor role in fusion research [2]. Symmetry breaking in-
stabilities are ubiquitous in chemistry, fluid dynamics,
or biology [3]. In optical systems, optical nonlinearities
have been shown to lead to self-organization in the plane
transverse to the light propagation, in a variety of media
and geometrical configurations [4–8].
In recent years, self-organizing instabilities due to the
opto-mechanical coupling of light and cold [9–14] and ul-
tracold [15, 16] atoms have attracted remarkable interest.
In many of these schemes a pump beam is scattered by
the gas into an externally imposed mode (often selected
by a cavity). The interference between this mode and the
pump then provides a modulated light pattern, which via
dipole forces leads to a spatial rearrangement of atoms.
The emerging density gratings resulting from the inter-
ference of this mode and the pump then provide positive
feedback by scattering photons into the self-sustained
mode. In these arrangements, the spatial scale of the
emerging structure is predetermined by the light wave-
length and the geometrical configuration. Multi-mode
cavity setups displaying continuous symmetry breaking
and spin-glass behavior in ultracold gases also attracted
remarkable interest [17]. Alternative and naturally multi-
mode schemes are possible in cold atoms, where spatial
organization emerges in the plane transverse to the prop-
agation of a single beam, with self-selected scales. It
is in fact expected that atomic transport due to dipole
forces can lead to nonlinear effects in cold atoms anal-
ogous to the Kerr effect in the hot-atoms case [18, 19].
Self-organization in a counterpropagating geometry was

first analyzed in [20] and some experimental evidence for
its existence was found in [21]. In [22] it was shown that
opto-mechanical forces in a ring cavity configuration can
lead to an instability even in the absence of any opti-
cal (Kerr) nonlinearity, thus providing a new pattern-
forming mechanism on their own. The study of trans-
verse opto-mechanical instabilities in cold atoms has been
so far limited to the case where strong velocity damping
is provided by optical molasses [20, 22]. Recent experi-
ments in cold Rb have however shown spontaneous sym-
metry breaking due to opto-mechanical coupling, but in
the absence of such damping [23]. The need of a satisfac-
tory understanding of these results has thus been a strong
motivation to the theoretical study of the damping-free
case by extending the analysis of [20] and [22].
Nonlinear effects of conceptually similar origin have also
been demonstrated in plasmas, such as self-focusing and
filamentation [24–26]. Here the nonlinearity originates
from ponderomotive forces acting on the plasma and
pushing the electrons away from high-intensity regions.
In the presence of feedback this is expected to lead to a
coupled light-density transverse self-organization, whose
theoretical or experimental evidence is to our knowledge
still lacking in the context of plasma physics. We also em-
phasize that the connection between plasmas and cold
atoms can be extended beyond the correspondence be-
tween dipole and ponderomotive forces. In fact, attrac-
tive (shadow) and repulsive (radiation pressure) forces
exist inside magneto-optically trapped samples, which in-
troduce an effective charge between the atoms and thus
simulate electrostatic interaction [27–30]. Beside the fun-
damental interest in cold-atom instabilities, therefore,
cold and ultracold atomic samples can also provide a
powerful and highly controllable tool for the study of
various plasma systems including quantum plasmas.

We consider a thermal gas of two-level atoms described
by the distribution function f(x,v, t). In what follows,
x and v denote the positions and velocities in the plane
transverse to the propagation of light, see Fig. 1. The
gas is initially prepared at temperature T and interacts
with an optical beam at frequency ω0, tuned far from any
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FIG. 1: Sketch of the single mirror feedback scheme. A plane
wave of intensity s0 interacts with a sample of two-level, cold
atoms. The gas (or plasma) imposes a phase shift χ0n(x, t)
on the field, where n is the atomic density. Transverse fluc-
tuations in the phase profile of the forward field gF (dashed
line) are converted into amplitude modulations for the back-
ward field gB (full line) by the free-space propagation to the
mirror (reflectivity R, distance d) and back.

atomic transition. Due to this large detuning assump-
tion, heating effects are negligible. At the low tempera-
tures obtainable by laser cooling (T ∼ 100µK), collisions
are also negligible and the dynamics is governed by the
collisionless Boltzmann equation

∂f

∂t
+ v · ∂f

∂x
+

F

M
· ∂f
∂v

= 0 , (1)

where M is the atomic mass, and F the force acting on
the gas. In cold atoms this is given by the dipole force
F = − 1

2~δ∇x log[1 + s(x)], where δ = ω0 − ωat is the
atom-light detuning and s(x) = I(x)[Isat(1 + 4δ2/Γ2)]−1

the saturation parameter associated with the total in-
tensity I(x) illuminating the gas. Scattering forces are
neglected by assuming the detuning to be much larger
than the atomic linewidth, |δ| ≫ Γ.
The plasma case is retrieved by identifying f as the elec-
tron distribution, M = me as the electron mass and
Fpm = −

[

e2/
(

2ε0cmeω
2
0

)]

∇xI(x) as the ponderomotive
force, with e the electron charge, ε0 the vacuum permit-
tivity and c the speed of light in vacuum.
To analyze the stability of the perturbations, we Fourier-
transform our quantities in space and Laplace-transform
in time. This leads to the usual relations ∂x → iq
and ∂t → −iω, with growing perturbations identified by
Im(ω) > 0. Linearization of Eq. (1) then leads to

(−iω + iq · v)f1 = i
~δ

2M

s1(q, ω)

1 + sh
q · ∂f0

∂v
+ f1(0) , (2)

where f1(0) denotes the initial disturbance, and we took
into account the fact that the force is a first order quan-
tity involving spatial gradients. Scaling is such that
s0 = |gF |2 represents the saturation parameter associ-
ated to the forward field, and sh = (1 + R)s0 is the ho-
mogeneous solution (R being the mirror transmittivity,
see Fig. 1). Since we are interested in transverse effects
only, we average over the longitudinal degrees of free-
dom and take the total intensity as s = s0 + |gB |2. The

Laplace transform ensures that causality is preserved by
correctly viewing Eq. (1) as an initial value problem.
To obtain s1(q, ω) we first calculate the forward field gF
at the exit of the medium. In the limit of small satura-
tion parameters and large detuning we can neglect ab-
sorption and approximate the atoms as linear (Rayleigh)
scatterers. The forward field will thus be phase-shifted
as gF → gF exp{iχ0n(x, t)}, where χ0 is the linear phase
shift imposed by the cloud and n the spatial density of
the gas, obtained by integrating f(x,v, t) over the entire
velocity space. For a sample of two-level atoms with opti-

cal density b0 one has χ0 = b0δ
[

Γ(1 + 4δ2/Γ2)
]

−1
. Sim-

ilarly, a plasma acts as a purely dispersive medium with
a density-dependent susceptibility [2]. In what follows
definitions are chosen so that the uniform density solu-
tion is nh = 1. We then propagate the field to the mirror
(distance d) and back to obtain the backward field gB . If

the backward field is perturbed as gB = g
(0)
B (1+b1(x, t)),

the intensity perturbation s1(q, ω) = Rs0(b1(q, ω)+ c.c.)
will depend on the gas distribution as:

s1(q, ω) = −2R s0χ0 sinΘq

∫

dv f1(q,v, ω) , (3)

where Θq = (d/k0)q
2 is the diffractive phase shift, with

k0 the light wavenumber and q = |q| the transverse
wavenumber. The key point of the single mirror feed-
back scheme is the conversion of phase perturbations
into amplitude perturbations operated by the free-space
propagation [5]. In fact, as phase fluctuations are con-
verted into amplitude perturbations for the backward
field, dipole forces are induced into Eq. (1). These in
turns affect n through the opto-mechanical coupling and
consequently feed back to the backward field amplitude
profile. If positive feedback can be obtained for a dis-
turbance at some wavevector q, an instability at that
wavevector is expected.
To progress in the stability analysis we now seek a closed
expression for s1. Obtaining f1 from Eq. (2) and using
this result into (3) we reach the following expression for
the intensity perturbation:

s1(q, ω) = −2Rs0χ0 sinΘq

∫

dv
f1(0)

iq · v − iω
×

×
[

1 +Kq

∫

dv
êq · ∂f0/∂v
êq · v − ω/q

]

−1

,

where êq is the unit vector oriented as q and we defined

Kq =
~δ

M

Rs0
1 + (1 +R)s0

χ0 sinΘq .

The behavior of s1(x, t), and thus the dynamics of the
system, is fully determined by the inverse Fourier and
Laplace transforms of s1(q, ω). Under regularity assump-
tions for f1(0) and ∂f0/∂v, the integrands above have
no singularities and the only contributions to the inverse
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Laplace transforms are given by the zeros of a ‘dielectric
function’:

D(q, ω) = 1 +Kq

∫

dv
êq · ∂f0/∂v
êq · v − ω/q

= 0 . (4)

A formally identical result is obtained for the case of
an electron plasma under the action of ponderomotive
forces. The plasma case is retrieved by substituting Kq

with KPL
q =

[

e2/
(

ε0cm
2
eω

2
0

)]

RI0χ0 sinΘq, with I0 the
non-rescaled incident intensity (in Wm−2).

A first general result can be found from Eq. (4) by ex-
panding ω = ωr+iωi. Requiring both real and imaginary
parts of D(q, ω) to be zero leads to the condition:

1 +Kq

∫

dv
(êq · ∂f0/∂v)(êq · v)

(êq · v − ωr/q)2 + (ωi/q)2
= 0 . (5)

For any monotonically decreasing function f0(|v|), such
as a Maxwellian, we find that an instability is in princi-
ple always possible since (êq · ∂f0/∂v)(êq · v) < 0. Such
monotonicity is thus a sufficient criterion for the occur-
rence of an instability, though it is not necessary: also
non-monotonic distributions may in fact satisfy the con-
dition (5). Eq. (5) also imposes a general restriction on
the possible unstable wavenumbers in the single mirror
arrangement. Since in two-level atoms χ0 ∝ δ−1 we have
that δ χ0 > 0 always, and an instability is found only
in the regions where sinΘq > 0. Similar considerations
apply to the plasma case, where no red-detuning analog
exists. One could see the opto-mechanical mechanism as
responsible for a Kerr-like, self-focusing nonlinearity in-
dependent of the sign of the detuning. This was already
recognized by Ashkin in early studies on dielectric par-
ticles [31], and remains true in the damped case of [22].
However, an important difference with soft-matter stud-
ies is that no velocity damping is present in our system.
We remark that the result (5) is a general property of
the opto-mechanical mechanism investigated here, and
can be generalized to different geometries (e.g. a ring
cavity). Eq. (5) should be contrasted to the Newcomb-
Gardner theorem in plasma physics [32], stating that
plasma (Langmuir) waves are always stable if the initial
velocity distribution is monotonically decreasing. For the
case analyzed here of transverse perturbations and feed-
back, instead, we demonstrate an instability for mono-
tonically decreasing f0. We note that Eq. (5) identifies
an instability both for dipole forces in cold atoms and
pondermotive forces in plasmas.
Let us go back to Eq. (4), and focus for simplicity our at-
tention to one transverse dimension. If f0(|v|) is taken as
the Maxwellian f0 = (2πv2th)

−1/2 exp(− 1
2 v

2/v2th), where
v2th = kBT/M , there is no analytic solution to the disper-
sion integral in Eq. (4). However, if we restrict ourselves
to the threshold condition ω = 0 the dispersion integral
simply reduces to the normalization condition for f0 and
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FIG. 2: (Color online) Linear growth rate at the critical

wavenumber qc =
√

πk0/2d. Dots are numerical evaluations
of the dispersion relation (4) for the Maxwell distribution, the
red line is the expression of Eq. (7). Parameters are: δ = 30Γ,
χ0 = 1, R = 1, d = 5mm and T = 300µK.

we obtain a threshold condition for the injected satura-
tion parameter:

s0 = sth ≡
[

~δ

kBT
Rχ0 sinΘq − (1 +R)

]

−1

. (6)

The most unstable wavenumber (with minimum thresh-
old) is given by the condition sinΘq = 1, and a threshold
is found also for the phase shift: χ0 > (~δ/kBT )

−1(1 +
R)/R. Eq. (6) thus shows that an instability is possible
for a Maxwellian gas and provides the threshold condi-
tion. We remark that the threshold (6) is identical to
the one found in the presence of optical molasses, i.e. by
adapting the model of [22] to the single mirror feedback
geometry. However, Eq. (6) still leaves us without any in-
formation on the timescale of the process. Such informa-
tion requires the calculation of the growth rate although,
as stated earlier, no analytic solution is possible for the
dispersion integral in (4). The dispersion integral can be
analytically solved for the case of a Lorentzian velocity
distribution f0 = π−1vth/

[

v2 + v2th
]

: for this case the
growth rate is purely imaginary, ω = iωi, and given by

ωi = |q|
{

−vth +
√

Kq

}

.

Since we do not expect the particular form of the distri-
bution to be relevant in determining the qualitative fea-
tures of the process, we numerically solve the Maxwellian
dispersion relation D(q, iωi) = 0 for a given q, and
look for an equivalent expression of the growth rate.
We choose here to investigate the critical wavenumber
qc =

√

πk0/2d (which satisfies sinΘqc = 1). Fig. 2 shows
the growth rate ωi for the Maxwellian case for δ = 30 Γ,
χ0 = 1, R = 1, d = 5mm and T = 300µK. Taking the
D2 line of 87Rb as a reference we use Γ−1 = 26ns and
M = 1.44 × 10−25 kg. A phase shift χ0 = 1 can be ob-
tained by using a cloud with in-resonance optical density
of 120. We find that the growth rate is well described by

ωi =
√
2qc

{

−vth +
√

Kqc

}

, (7)
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which is identical, numerical prefactors aside, to the
Lorentzian result. This result is easily extended to the
plasma case by substituting Kq with KPL

q (see the dis-
cussion after Eq. (4)).
Fig. 3 shows the distribution function f(x, v) obtained
from numerical simulations of Eq. (1), for a final time
of 3ms and a transverse domain size of 5 critical wave-
lengths Λc = 2π/qc. We drive the system with a pump
beam of intensity s0 = 0.05 (roughly 1.37 times the
threshold) and observe the spontaneous emergence of a
periodic optical potential, trapping a large fraction of the
atoms in the intensity minima (maxima) for blue (red)
detuning, respectively. We also show in Fig. 3 the in-
tensity profiles s(x) and the density distributions n(x)
obtained on the blue and red side of the resonance. The
spatial scale of these structures is given by Λc ≃ 125µm
with our choice of parameters, which is close to experi-
mental observations [23].
We remark that the result (7) holds also for a different
choice of the wavevector q, and that the growth rate de-
pends only on the modulus |q|. The driving term

√

Kq|q|
directly depends from the intensity s0, as well as the op-
tical thickness of the medium and the light-atom detun-
ing. On the other hand, a dephasing term −vth|q| orig-
inates from thermal motion. The balance of these two
effects (ωi = 0) leads to the threshold (6). Finally we
note that the expression (6) implies that the instability
threshold approaches zero as T → 0 or, equivalently, as
f0(v) → δ(v) in our kinetic theory, which is a familiar
result in the context of cold plasma instabilities. This
is an important result since it gives considerable experi-
mental flexibility in terms of achievable temperature and
optical thickness. However, we note that decreasing the
temperature below the Bose-Einstein condensation point
the phenomenology is expected to change considerably.
The study of transverse instabilities in a degenerate Bose-
Einstein condensate is beyond the scope of this Letter,
and will be analyzed in future studies.

In conclusion, we have theoretically investigated opto-
mechanical transverse instabilities in a single mirror feed-
back configuration. Similar results are expected for other
configurations, such as counterpropagating beams and
ring cavities. In contrast to previous studies in cold gases,
no velocity damping is assumed in the system. Our ki-
netic theory for such a damping-free case is formally ex-
tendible to the case of a single-specie plasma, with the
dispersion relation depending on the initial velocity dis-
tribution of the gas. We demonstrated that for monoton-
ically decreasing velocity distributions of the gas a trans-
verse instability due to opto-mechanical coupling is in
principle always expected. For the case of a Maxwellian
gas we identified the threshold condition for such an in-
stability, together with an expression for the growth rate
which agrees well with a numerical evaluation of the dis-
persion relation. A threshold appears when the driving
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FIG. 3: Results from numerical simulations, for the same
parameters as Fig. 2, injected intensity s0 = 0.05 (≃ 1.37
times the threshold), and detuning δ = 30Γ (a) and δ = −30Γ
(b). For blue (red) detuning the maxima of the atomic density
n(x) align with the minima (maxima) of the optical intensity
profile.

effect due to the pump and the dephasing effect due to
thermal motion balance each other. The theory devel-
oped here does not take into account absorption or non-
linear dispersion originating from the internal structure
of the atoms, so that the instability is entirely due to
opto-mechanical coupling. The inclusion of such optical
effects will be presented elsewhere, but we stress that
they are not of principal importance in the large detun-
ing limit. Future work could also extend the connec-
tion with plasma physics by including electrostatic-like
effects [27–30], or investigate transverse instabilities in
ultracold atomic gases and quantum plasmas.
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