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Abstract.
We present two novel dressed inductive ring trap geometries, ideal for atom

interferometry or studies of superfluidity and well-suited to utilisation in atom
chip architectures. The design permits ring radii currently only accessible via
near-diffraction-limited optical traps, whilst retaining the ultra-smooth magnetic
potential afforded by inductive traps. One geometry offers simple parallel
implementation of multiple rings, whereas the other geometry permits axial beam-
splitting of the torus suitable for whole-ring atom interferometry.
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1. Introduction

A toroid is one of the simplest multiply-connected 3D shapes, and the periodic
boundary conditions both simplify and enrich experimental and theoretical work. In
the limit of small cross-sectional area, annular traps permit approximate access to
ideal 1D infinite systems (cf. Born-von Karman boundary conditions) using a finite
experimental footprint. Ring traps are excellent systems in which to perform atom
interferometry [1, 2, 3] or study superfluidity [4, 5]. Extremely smooth magnetic ring
traps for ultracold atoms can be made via induction [6, 7], which eliminates both wire
end-effects and roughness from meandering DC currents [9]. Such time-averaged traps
are limited to radii ≥ 5 mm for the ‘thin-wire’ geometries considered here, however
careful optimisation of wire thickness can decrease radii to≈ 1 mm [8]. In this paper we
show – for the first time – how inductive ring traps can be obtained using RF-dressing,
which then permits access to the ≤ 0.3 mm ring radius regime, suitable for fabrication
on atom chips. Such chips offer the prospect of portable ultracold atomic setups and
there have been recent important developments in both chip loading [10] and their
application [11, 12]. We envisage prospects for low-decoherence on-chip studies of
Sagnac interferometry, superfluidity, ring dark solitons [13] as well as vortices [14] and
solitons [15] in low-dimensional systems.

There have been a wide variety of studies of cold matter in toroidal
geometries, which we briefly summarize, considering first complementary traps, before
concentrating on the purely magnetic techniques relevant to this article.

The optical dipole force can be used in many ways to confine atom in ring traps:
by optically plugging a magnetic trap [16, 17], using static ‘hollow’ Laguerre-Gauss
beams [3, 4, 5, 18, 19, 20, 21] or beams that have intensity profiles spatially-shaped
by a spatial light modulator [22]. In addition, one can quickly scan a focused beam
[23, 24, 25] and trap atoms in the time-averaged dipole potential, opening access to a
variety of complex geometries including ring lattices. Static dipole traps using both
co- [26] and counter-propagating [27] Laguerre Gauss mode superpositions also offer
the flexibility of extending to more exotic ring geometries.

Magnetic ring-shaped traps have been proposed and realised using either static
[28, 29, 30] or time-averaged [31, 32, 33] magnetic fields. In purely magnetic traps,
to reduce the size of the system, the current-carrying wires – needed to connect the
system to an external electric source – get closer to the trap region, perturbing the
rotational symmetry of the potential. Furthermore, fragmentation of atomic clouds
has been seen for magnetically trapped gases lying close to current carrying wires in
atom chips [34, 35, 36, 37, 38]. This was attributed to corrugations or irregular domain
structure in the conductor that deflect the current from the desired path. A way to
circumvent this is the use of alternating current to ‘time-average’ away the defects [9].

The need to obtain an ultra-smooth ring trap, with no end effects due to
input/output wires and the inherent magnetic smoothness of an ac current, led to
the proposal of a time-averaged toroidal trap based on a conducting ring driven by
magnetic induction [6]. This trap has now been experimentally realised [7], however
although the trap works well at ring radii of a few mm, it is not scalable down into
the sub-mm regime required for atom chips. This is because time-orbiting potential
(TOP) traps [31, 39] require ωT � ωTOP � ωL where the subscripts T, TOP and L
refer to the harmonic trap, rotating bias field, and Larmor angular frequencies at the
trap location, respectively. Ring-shaped conductors with radius rr and wire radius rw
have a natural high angular frequency cutoff ωRL = R/L ∝ (ln(8rr/rw)− 1.75) rw

−2,
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however we have shown that inductive TOP traps work best with ωTOP a few times
greater than ωRL [6]. For a given wire geometry (rw/rr) this leads to a prohibitive
increase in ωTOP (above the Larmor angular frequency) due to the rapid increase
in ωRL as the ring size shrinks. Throughout this paper we consider rw/rr = 0.07,
suitable for chip traps, however ωRL can be reduced to some extent by increasing rw
for a given rr.

Recently, using radio-frequency adiabatic potentials [40], new ways to create
toroidal ring traps have been suggested [41, 42, 43, 44, 45] offering extended flexibility
for trap geometries. In particular a time-averaged adiabatic potential (TAAP) [44]
ring trap has recently been experimentally demonstrated [46]. In this paper, we
present a new scheme for creating a toroidal trap with a radius in the 100 µm range
with magnetic fields oscillating at RF frequencies, extending the inductive trap from
the TOP regime [6], into the higher-frequency adiabatic regime, whilst retaining all
the benefits of the inductive geometry. Magnetic traps are inherently free of the
wavelength-scale diffraction corrugation that can potentially plague optical traps with
radii ≥ 20µm [4, 5], and as our trap design is suitable for implementation on atom
chips, it will have advantages over dressed traps with macroscopic coils [46] in terms
of gradiometry and portability.

2. General theory of dressed inductive ring traps

We first present the central principles of the dressed inductive ring trap, then discuss
two different implementable layouts, i.e. with the quantisation magnetic field being
either spatially uniform but with time-varying direction (a TAAP-type trap) or a
static quadrupole configuration. To begin generally, we consider an atom in a static
or slowly varying quantisation magnetic field BS(r, t) with an alternating magnetic
field BRF(r) at angular frequency ω. In the dressed state picture, the AC field induces
a coupling of the atomic Zeeman sub-levels and the resulting interaction Hamiltonian
can be written

H(r, t) = ΩRF(r)Fσs cos (ωt) + ΩS(r, t)FZ, (1)

where Fσs and FZ are respectively the projections of the total angular momentum
operator along the σs polarisation and Z directions (if we choose a local co-ordinate
system with Z parallel to BS). The parameter s = sign(gF ) is the sign of the Landé
g-factor gF for the total angular momentum F . The Larmor frequency is expressed as
ΩS(r, t) = gFµBBS(r, t)/~ and ΩRF(r) = gFµBBσs(r)/~ denotes the Rabi frequency
associated with the part of the AC field that contributes to the coupling between the
Zeeman sub-levels, where µB is the Bohr magneton. In this limit, one can simply
express the resulting adiabatic potential as

U(r, t) = ~mF

√
δ2(r, t) + ΩRF

2(r) = ~mFΩ, (2)

for an atom initially in the mF Zeeman sub-level, with δ(r, t) = ΩS(r, t) − ω the
detuning between the Larmor and drive frequencies. These expressions for H(r, t) and
U(r, t) stand in the adiabatic regime, i.e. as long as the condition |θ′(r, t)| � Ω(r, t)
is valid, where θ = arctan(ΩRF/δ). Adiabaticity can thus be re-expressed as

A =

(
δ2 + ΩRF

2
)3/2∣∣δΩRF

′ − δ′ΩRF

∣∣ � 1, (3)
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where ′ represents the total time derivative d
dt = ∂

∂t + v · ∇, allowing for atomic
motion at velocity v, and we refer to A as the adiabaticity parameter. We will only
consider trapping regions in which the rotating wave approximation (RWA) is valid,
i.e. ηδ = |δ(r, t)|/(ΩS(r, t) + ω)� 1, and ηRF = ΩRF/ω � 1 [47].

Consider now the experimental apparatus illustrated in Fig. 1: a set of two
Helmholtz coils (orange) provide a spatially homogenous oscillating field BH ẑ eiωt

throughout the surface of the conductive ring (red), and parallel to the ring axis (z).
Spatial homogeneity of BH is reasonable if we consider the ring to have much smaller
dimensions than the coils, and homogeneity is not essential as long as cylindrical
symmetry is not significantly broken. The magnetic flux from BH induces a current in
the ring, which has a complex amplitude calculated using Lenz’s law and characterised
using the ring’s electrical resistance R and inductance L [6]:

IRing = − πrr
2BH

L(1− iωRL/ω)
= |IRing| eiφ, (4)

where rr is the radius of the ring. The above formalism using complex currents allows
one to drop time dependence. This current, in turn, generates a synchronous magnetic
field Bring(r)eiφ which is fully spatially expressed using elliptical integrals [48]. The
complete RF field, with time dependence, at position r is thus:

BRF(r) =
(
Bring(r) eiφ +BH ẑ

)
eiωt.

Now we consider a static, or slowly varying, magnetic field BS(r), which we choose as
our quantisation axis. The RF field has to be expressed in terms of the two components
B⊥1

(r) and B⊥2
(r) orthogonal to the static field, since the parallel (π) component does

Figure 1. Magnetic coil schematics. In both geometries, the driving ac-
Helmholtz coils (orange) and the ring in which current is magnetically induced
(red) oscillate at angular frequency ω and have axes aligned with the z direction.
The two geometries we consider are: a) two Helmholtz coil pairs (blue and
dark blue) driven in quadrature at an angular frequency ωS � ω, b) a DC
anti-Helmholtz coil pair (blue). Black, gray and white arrows indicate current
directions at angular frequencies ω, ωS and DC, respectively. Co-ordinate pairs
are coil current angular frequencies, with associated phases.
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not contribute to coupling. Using Jones’ formalism [49], the amplitude of the RF fields
that couples to σ± transitions is then given by:

Bσ±(r) =
1

2
√

2

∣∣∣(1± i)B⊥1
(r) + (1∓ i)B⊥2

(r)
∣∣∣. (5)

It is then straightforward to calculate the adiabatic potential using Eq. 2.
Throughout this paper, unless otherwise stated, we assume a copper ring with

a radius of 400µm and a wire radius of 28µm. Helmholtz coils provide an RF field
of amplitude BH = 12 G oscillating at ω = 2π × 10 MHz. Our simulations include
a finite-element solver [7] to account for the finite ring size and the skin effect that
can significantly change the electrical parameters at high frequencies, as well as for
precise calculation of the potential depth. Note, however, that the main results of
the paper can still be reproduced to reasonable (≈ 10%) accuracy without resorting
to finite-element calculations. With the above ring dimensions and driving field, the
ring has resistance and inductance of 18 mΩ and 1.5 nH, respectively. The current
amplitude flowing inside the conductor is 390 mA, dissipating about 1.4 mW that
rapidly leads to an equilibrium temperature of the copper of approximatively 230◦C
(assuming perfect black body radiation). If required, this temperature rise could be
radically reduced using e.g. a diamond substrate as an electrically insulating heatsink.
We also consider the specific case of 87Rb pumped into the |F = 2, mF = 2〉 magnetic
sub-level, therefore gF = 1/2 and only the Bσ+(r) component couples to the atomic
spin.

3. Geometry 1: Inductive TAAP ring

We now focus on the inductive TAAP configuration (Fig. 1 a), where the quantisation
field is spatially homogenous, with a vector direction in the xy plane of the ring, but
rotating around the symmetry axis. For a snapshot in time the cylindrical symmetry
of the system is broken by the quantisation field BS – as the total RF field BRF(r)
is projected into a different ratio of coupling:non-coupling components, depending on
the quantisation direction. However, as the atoms can’t respond on these time-scales,
they experience the cylindrically symmetric time-averaged TAAP potential averaged
over one rotation period of the quantisation field shown in Fig. 2. Here the constant
magnetic field amplitude of BS(t) = 15.9 G creates a corresponding detuning δ which
is spatially and temporally constant, i.e. 2π × 1.15 MHz. The time averaged trap is
located slightly below the plane of the ring wire due to gravitational sag, with radial
and axial trap frequencies of 400 Hz and 250 Hz, respectively.

There are two factors to consider for the maximum trappable temperature in the
inductive TAAP. Firstly, gravity results in a saddle point shown in Fig. 2, and atoms
hotter than 103µK will no longer be confined to a ring but have access to a disk.
Secondly, one can show that, during the rotation of the quantisation field, there are
curves of points where the RF coupling totally vanishes (black zones). However, as the
detuning is non-zero when the coupling vanishes, the adiabatic potential still exists.
One can estimate the loss at these locations using the A parameter, Eq. 3. These
points would in principle limit the trap depth to 5 µK, however the smallest value
of the loss parameter is A = 310 near the instantaneous 3D point of zero-coupling
(compared to A = 1600 at the trap minimum) for 100µK atoms with a quantisation
axis rotation rate of 10 kHz. We can therefore expect negligible Landau-Zener loss,
so atom temperature and the background pressure will be the only limits to the ring
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Figure 2. a) The time-averaged potential resulting from rotating the
quantisation field in the xy plane of the ring. White and black crosses indicate trap
minima and saddle points, respectively, and the ring wire is shown by the copper
disk. The black regions show the aggregate of the zones where the RF coupling
drops below 2π × 100 kHz as the quantisation axis angle varies in the range 0
to 2π (see also the supplementary movie of the instantaneous potential as the
quantisation field rotates). The colour scale is relative to the trap minimum, black
contours are 5 µK isopotential lines. b) The relative change of trap parameters,
compared to the δ = 1.15 MHz case (see values in main text), as the dressing
detuning δ is varied for: radial (blue, dash-dotted) and axial (purple, dash-dot-
dotted) trap frequencies, trap radius (red, dashed) and axial position (green,
dotted), A (black), ηδ (gray) and ηRF (orange, long-dashed).

geometry and lifetime, respectively. The RWA is valid at the trap location as ηδ = 0.05
and ηRF = 0.07 (cf. experimental parameters in Fig. 2 of Ref. [45] where ηδ = 0.12
and ηRF = 0.14).

The trap parameters of the inductive TAAP are amenable to scaling arguments
and we consider a scenario where the ring radius and wire radius both scale together
with the parameter ζ (i.e. rr → ζrr and rw → ζrw). The natural angular frequency
of the ring then transforms as ωRL → ζ−2ωRL, so if the RF drive angular frequency
follows an equal scaling ω → ζ−2ω, the skin depth of the RF current in the ring scales
with 1/

√
ω i.e. ζ, and the spatial current distribution in the wire remains the same.

Moreover, if the amplitude of the RF field ΩRF and the detuning δ are kept constant,
the TAAP trap potential depth and shape remain the same (if gravitational potential
is relatively weak), but are scaled to cover a region ζ times the original size – i.e. the
radial and axial trap frequencies are 1/ζ times larger.

4. Geometry 2: Inductive quadrupole ring

We turn now to the second inductive dressed ring configuration (Fig. 1 b), using a
static quadrupole quantisation field, yielding the cylindrically symmetric potentials
depicted in Fig. 3. Because of the spatially varying magnetic field amplitude, the
detuning δ is spatially dependent. The geometry of the potential is determined by
the strength of the magnetic quadrupole. We maintain all other parameters, including
ω = 2π×10 MHz, BH = 12 G. In the case of a radial quadrupole gradient of 480 G/cm,
the trap centre is located at {r, z} = {300,−10}µm, with radial and axial trap
frequencies of 750 Hz and 180 Hz, respectively (Fig. 3 a). Gravity limits the potential
to ∼ 31µK. Note the only place where the RF coupling vanishes is along the ring axis,

http://photonics.phys.strath.ac.uk/wp-content/uploads/2014/02/Fig2Movie.gif
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Figure 3. Potentials obtained using a quadrupole quantisation field with a
radial gradient of a) 480 G/cm and b) 440 G/cm, illustrating the transition from
a single to a double ring trap. White and black crosses indicate trap minima and
saddle points, respectively, and the ring wire is shown by the copper disk. The
colour scale is relative to the trap minimum, black contours are 5 µK isopotential
lines. The black region indicates where RF coupling drops below 2π × 100 kHz.
A supplementary movie shows the axial splitting of the ring trap as the
quadrupole gradient is lowered).

far from the trap minimum. The A parameter is A = 1100 near the trap minimum
so we can again expect negligible loss. The RWA is valid at the trap location as
ηδ = 0.007 and ηRF = 0.07.

A key advantage of this geometry is that if we change the strength of the
quantisation quadrupole to a radial gradient of 440 G/cm, one can split the ring into
two (Fig. 3 b), which could be useful for e.g. atom interferometrical determination of
gravity [12]. The simple scaling arguments for the inductive TAAP do not hold for
the quadrupole trap, due to the different spatial scaling of δ and ΩRF. However, with
appropriate modifications to the trap parameters, scaling to larger and smaller ring
radii is possible.

In terms of loading both kinds of dressed inductive ring trap (TAAP and
quadrupole), the relatively shallow depth due to its small dimensions necessitates
pre-evaporation of the atomic cloud, after optical molasses, to tens of microKelvin
in a magnetic or spin-polarised optical dipole trap. By applying bias fields to a
quadrupole/TOP/Ioffe magnetic trap, or focal point scanning of a single-beam dipole

http://photonics.phys.strath.ac.uk/wp-content/uploads/2014/02/Fig3Movie.gif
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trap with an AOM/moving lens, the pre-evaporated cloud could be moved to a
localised region of the dressed ring trap location prior to switching it on.

We note that a third dressed inductive geometry is possible, using a DC current-
carrying wire along the ring axis (cf. Ref. [30]). This also has very favourable trapping
parameters, however we have omitted detailed description due to the difficulty of
experimentally realising such a geometry on a chip.

5. Conclusions

In conclusion we have extended inductive ring traps from the time-averaged case to
the dressed domain, suitable for investigations of sub-millimetre ring traps. Two
geometries were considered – an inductive TAAP ring trap, and a splittable inductive
quadrupole ring trap – both of which are amenable to implementation on atom
chips. Inductive TAAPs have the advantage that they are ideally made with spatially
homogeneous inducing and quantisation fields, and as such many rings can be
implemented in parallel on the same chip for application in e.g. gradiometry. Inductive
quadrupole traps have quasistatic fields which must be centred on the ring, however
multiple quadrupoles for each ring can be implemented on the same chip using U-
wires, making parallel implementation of this geometry feasible as well. The inductive
quadrupole trap also enables tunable splitting of the ring into a double ring, permitting
measurement of e.g. gravitational acceleration, in addition to the usual use of ring
traps as gyroscopes. As both types of inductive ring trap have no reliance on optical
dipole forces, their potential should be extremely smooth, even with large (mm) scale
diameters, ideal for both interferometry and studies of superfluidity.
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[12] Baumgärtner F, Sewell R J, Eriksson S, Llorente-Garcia I, Dingjan J, Cotter J P and Hinds E
A 2010 Phys. Rev. Lett. 105 243003

[13] Toikka L A and Suominen K-A 2013 Phys. Rev. A 87 043601
[14] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[15] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and

Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[16] Naik D S and Raman C 2005 Phys. Rev. A 71 033617
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