Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets

Wood, T.A. and Gleeson, H.F. and Dickinson, M.R. and Wright, A.J. (2004) Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets. Applied Physics Letters, 84 (21). pp. 4292-4294. ISSN 0003-6951

[img]
Preview
PDF
Wood_et_al_liquid_crystals.pdf - Submitted Version

Download (54kB) | Preview

Abstract

A detailed study is presented that evaluates the relative importance of wave plate behavior, scattering processes and absorption phenomena in transferring optical torque from circularly polarized light to optically trapped nematic droplets. A wide range of parameters is considered: droplet diameters between 1 and 15 µm, birefringence values from 0.15 to 0.26 and trapping beam powers from 50 mW to 400 mW. Wave plate behavior is verified through the dependence of torque on droplet diameter and material birefringence. The dependence of the magnitude of the torque on material birefringence confirms the additional importance of the scattering mechanism. Absorption processes are found to be negligible.