Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Combining models of behavior with operational data to provide enhanced condition monitoring of AGR cores

West, Graeme M. and Wallace, Christopher J. and McArthur, Stephen D.J. (2014) Combining models of behavior with operational data to provide enhanced condition monitoring of AGR cores. Nuclear Engineering and Design, 272. pp. 11-18. ISSN 0029-5493

PDF (West-etal-NED2014-enhanced-condition-monitoring-of-agr-cores)
West_etal_NED2014_enhanced_condition_monitoring_of_agr_cores.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview


Installation of new monitoring equipment in Nuclear Power Plants (NPPs) is often difficult and expensive and therefore maximising the information that can be extracted from existing monitoring equipment is highly desirable. This paper describes the process of combining models derived from laboratory experimentation with current operational plant data to infer an underlying measure of health. A demonstration of this process is provided where the fuel channel bore profile, a measure of core health, is inferred from data gathered during the refueling process of an Advanced Gas-cooled Reactor (AGR) nuclear power plant core. Laboratory simulation was used to generate a model of an interaction between the fuel assembly and the core. This model is used to isolate a single frictional component from a noisy input signal and use this friction component as a measure of health to assess the current condition of the graphite bricks that comprise the core. In addition, the model is used to generate an expected refueling response (the noisy input signal) for a given set of channel bore diameter measurements for either insertion of new fuel or removal of spent fuel, providing validation of the model. This benefit of this work is that it provides a greater understanding of the health of the graphite core, which is important for continued and extended operation of the AGR plants in the UK.