
This version is available at http://strathprints.strath.ac.uk/47769/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Interactions of bound multiple solitons in strongly birefringent fibers

Michel W. Chbat
Laboratory for Physical Sciences, University of Maryland at College Park, 8050 Greenmead Drive, College Park, Maryland 20740-4000

Curtis R. Menyuk
Department of Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21228-5398

Ivan Glesk and Paul R. Prucnal
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544-5263

Received August 8, 1994

We report the observation of the interaction of bound multiple solitons generated by orthogonally polarized, high-amplitude pulses in strongly birefringent fibers. For the birefringence used, the threshold amplitude for the interaction is higher than that of the onset of second-order solitons on each axis. The characteristics of the output pulses are in good agreement with the results of a numerical simulation of this interaction. A general investigation of this effect is carried out at high values of birefringence, and it is found numerically that, even though the system is nonintegrable, the description of its evolution appears to be reducible to a finite number of effective degrees of freedom.

Because of their multiple applications, interactions of orthogonally polarized solitons in birefringent fibers have attracted considerable attention. For example, they are used as a basis for efficient all-optical logic gates. Menyuk has predicted that for solitons polarized along the principal axes of a moderately birefringent fiber, and above a certain threshold amplitude that depends on the fiber and pulse characteristics, the cross-phase modulation (XPM) can compensate for the walk-off that is due to linear birefringence. Through XPM, the solitons shift their center frequencies, and hence their group velocities, in such a way that they travel as a unit, forming a bound vector soliton. As the birefringence increases, the threshold amplitude will be such that the partial pulses form breathers having two-soliton structures, and for high values of birefringence the initial partial pulses form larger numbers of bound multiple solitons. We define this regime as strong birefringence. In this Letter we study the characteristics of the interactions of bound multiple solitons generated by high-amplitude pulses in strongly birefringent fibers. We will show that, even though the resulting system is nonintegrable, some qualitative assessment of the evolution of the vector solitons can be made.

If \(L_B \) is the beat length of the birefringent fiber and \(Z_0 \) is the soliton period, the condition for moderate (or higher) birefringence exists when \(Z_0/L_B \gg 1 \). In this case, the normalized equations governing the propagation of two pulses along the principal axes of a birefringent fiber are

\[
\begin{align*}
&\left(\frac{\partial u}{\partial z} + \delta \frac{\partial u}{\partial t} \right) + \frac{1}{2} \frac{\partial^2 u}{\partial t^2} + \left(|u|^2 + \frac{2}{3} |v|^2 \right) u = 0 , \quad (1) \\
&\left(\frac{\partial v}{\partial z} - \delta \frac{\partial v}{\partial t} \right) + \frac{1}{2} \frac{\partial^2 v}{\partial t^2} + \left(\frac{2}{3} |u|^2 + |v|^2 \right) v = 0 , \quad (2)
\end{align*}
\]

where \(u \) and \(v \) are the pulse envelopes along both principal polarizations, \(z \) is the distance of propagation, and \(t \) is the local time on the pulse. We take the normalization of \(t \) to be \(t = \tau/[2 \ln(1 + \sqrt{2})] \), where \(\tau \) is the FWHM of the pulse intensity, \(z \) is normalized by \(z_c = (2/\pi)Z_0 = 2\pi ct_c^2/[\lambda_0^2 D(\lambda_0)] \), where \(\lambda_0 \) is the carrier wavelength of the optical pulse, \(D(\lambda_0) \) is the fiber dispersion, and \(c \) is the speed of light in vacuum. \(|u|^2 \) and \(|v|^2 \) represent the power on the two principal axes and are normalized by \(P_c = \lambda_0^4 D(\lambda_0)A_{\text{eff}}/(4\pi^2cn_2t_c^2) \), where \(A_{\text{eff}} \) is the effective core area of the fiber and \(n_2 \) is the nonlinear-index coefficient of the fiber. Finally, \(\delta \) is the normalized birefringence defined by \(\delta = \Delta n t_c/[\lambda_0^2 D(\lambda_0)] \), where \(\Delta n \) is the difference between the indices of refraction on both principal axes. All our numerical simulations are based on a numerical integration of Eqs. (1) and (2) using a split-step Fourier-transform technique, with the input condition

\[
u(0, t) = \frac{a}{\sqrt{2}} \text{sech}(t). \quad (3)
\]

It has been shown numerically that, for the input condition of Eq. (3) and for values of \(\delta < 1.0 \), the threshold amplitude increases with increasing \(\delta \). Various analytical approaches have been considered for this case, and the dependence of the amplitude threshold on \(\delta \) was found to be either linear or nonlinear and to match to some extent the numerical results. However, these approaches do not give reasonable results for higher values of \(\delta \) when the system can be considered as containing more than a single soliton on each polarization axis. Indeed, the critical value of \(\delta \) that gives a threshold amplitude corresponding to the onset of second-order solitons is found by numerical simulation to be approximately

\[0.146-9592/95/030258-03$6.00/0 © 1995 Optical Society of America\]
δc = 1.08. Furthermore, the experimental observations of the soliton interactions were limited to values of δ < 1.0.1

We carried out an experiment to observe the interactions of high-amplitude solitons for a value of δ > δc. Figure 1 shows the experimental setup. A passively mode-locked NaCl:OH–color-center laser generates nearly transform-limited Gaussian pulses of width τ = 375 fs, with a center wavelength λ0 = 1.6145 μm. We used a 16-m length of moderately birefringent fiber having at this wavelength a dispersion D(λ0) = 5.25 ps km⁻¹ nm⁻¹, an effective core area Aeff = 4.77 × 10⁻⁷ cm², and a linear birefringence ∆n = 2.40 × 10⁻⁵, yielding δ = 1.17. A combination of a half-wave plate and a pair of polarizing beam splitters was used to produce two orthogonally polarized pulses of adjustable power ratio, which, in this experiment, was maintained at 1. A second half-wave plate was placed at the fiber input to couple the pulses into the fiber along its principal axes. The polarization extinction ratio was kept between 14:1 and 19:1. The two pulses were temporally coincident at the fiber input, and the timing between them was controlled by a motorized translation stage that permitted a timing resolution of approximately 0.7 fs.

We performed a numerical simulation to determine the pulse threshold amplitude for δ = 1.17. For these high-amplitude pulses, the spectra have a complex structure that features multiple peaks and a complex evolution as the pulses propagate through the fiber. Therefore the wavelength shift for a given pulse will be accounted for in our simulations by the frequency centroid \(\omega_c \), defined as the spectral-intensity-weighted average frequency shift from \(\omega_0 = 2\pi c/\lambda_0 \) on the spectrum. Figures 2(a) and 2(b) show the variation with the distance of propagation of \(\omega_c(z) \) and the peak time location \(t_p(z) \), respectively, of the pulse on the fast axis. The values for the slow-axis pulse are opposite these values. The threshold amplitude for the trapping of both solitons is seen to be \(a = 2.45 \), below which \(\omega_c(z) \) reaches a constant value and \(t_p(z) \) grows without bounds and above which both \(\omega_c(z) \) and \(t_p(z) \) oscillate, indicating that the two orthogonally polarized pulses are trapped. This value of \(a \) corresponds to a normalized peak amplitude of 1.73 on each axis. Hence, in the absence of birefringence, a second-order soliton would form.7

The attenuator is adjusted in a way such that the total normalized peak power is \(a = 2.50 \). Figure 3 shows the calculated shape, autocorrelation, and spectrum of the fast-axis pulse at the fiber output for \(a = 2.50 \). The pulse is seen to be compressed to a width of 260 fs and the peak wavelength shift is 8.17 nm. Figure 4 shows the measured autocorrelation trace and spectrum of the fast-axis pulse at the fiber output. It is seen that, assuming a hyperbolic-secant shape, the output pulse width is 271 fs, and the peak wavelength shift is 8.2 nm, in good agreement with the numerical results.

It is seen from Fig. 2 that, as the bound vector soliton forms, \(\omega_c(z) \) and \(t_p(z) \) oscillate rapidly with a spatial frequency that increases with increasing amplitude, with a low-frequency modulation. In the case of low birefringence, typically \(\delta < 0.6 \), the low-frequency modulation has a negligible effect over a large distance of propagation, and the system behaves as an independent oscillator. Figure 5(a)
The rapid spatial oscillation of v_F in Fig. 2. For higher values of birefringence (δ), this pulse contains two bound solitons; the system can then be described by a finite number of degrees of freedom over a long but finite length. For example, when two bound solitons are present on each principal axis, having amplitudes above threshold, it is seen that two effective degrees of freedom can describe the evolution of the vector soliton. For higher values of birefringence the number of soliton structures increases, and so does the number of the effective degrees of freedom, leading to a complex motion of the soliton structures.

In conclusion, we observed experimentally the interaction of bound multiple solitons generated by two orthogonally polarized high-amplitude pulses in a strongly birefringent fiber. Our results indicate that, in the presence of strong birefringence, initial conditions rapidly evolve into soliton-like structures whose overall motion is governed by a finite set of effective degrees of freedom over a long but finite length.

References

4. In the case of low birefringence, terms oscillating with a normalized spatial frequency of $8Z_0/L_B$ are added to Eqs. (1) and (2). Their effect is polarization instability, in which energy is transferred from the fast axis to the slow axis. See, e.g., K. J. Blow, N. J. Doran, and D. Wood, Opt. Lett. 12, 202 (1987).