Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

An energy analysis of IEEE 802.15.6 scheduled access modes for medical applications

Tachtatzis, Christos and Di Franco, Fabio and Tracey, David C. and Timmons, Nick F. and Morrison, Jim (2012) An energy analysis of IEEE 802.15.6 scheduled access modes for medical applications. In: Ad Hoc Networks. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 89 . Springer, pp. 209-222. ISBN 9783642290954

Full text not available in this repository. (Request a copy from the Strathclyde author)


Medical body area networks will employ a range of implantable and body worn devices to support a wide range of applications with diverse QoS requirements. The IEEE 802.15.6 working group is developing a communications standard for low power devices operating on, in and around the body and medical devices are a key application area of the standard. The ISO/IEEE 11073 standard addresses medical device interoperability and specifies the required QoS for medical applications. This paper investigates the lifetime of devices using the scheduled access modes proposed by IEEE 802.15.6, while satisfying the throughput and latency constraints of the ISO/IEEE 11073 applications. It computes the optimum superframe structure and number of superframes that the device can sleep to achieve maximum lifetime. The results quantify the maximum expected achievable lifetime for these applications and show that scheduled access mode is not appropriate for all application classes such as those with intermittent transfer patterns. © 2012 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.