Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Piezoelectric materials for application in low profile interdigital transducer designs

Gachagan, Anthony and Reynolds, P. and Hayward, Gordon and Monkhouse, R and Cawley, P (1997) Piezoelectric materials for application in low profile interdigital transducer designs. In: 1997 IEEE Ultrasonics Symposium Proceedings. IEEE, New York, pp. 1025-1028. ISBN 0780341538

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a comparative study between piezopolymer (PVDF) and piezo-platelet active layers in flexible interdigital transducer (IDT) designs for the generation of ultrasonic Lamb waves in thin plate structures. Initially, the pulse-echo response in steel was evaluated, where the piezo-platelet transducer demonstrates significant sensitivity advantage over the PVDF devices. The mechanical behaviour of each transducer was further investigated using a laser interferometer scanner to measure surface displacement and evaluate the extent of cross coupling and electrode pattern on the IDT response. Furthermore, finite element modelling has been utilised to evaluate the IDT coupling efficiency for the generation of a particular ultrasonic Lamb wave mode. Interestingly, it is shown that the properties of each transducer tend to be complementary with respect to a particular application. The piezo-platelet materials possess distinct advantages for generation of in plane, symmetric modes, especially for operation in composite plates, while the PVDF, although less efficient, has advantages with regard to cost and flexibility for the generation of anti-symmetric modes in metallic plates.