Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

DC voltage variation based autonomous control of DC microgrids

Chen, Dong and Xu, Lie and Yao, Liangzhong (2013) DC voltage variation based autonomous control of DC microgrids. IEEE Transactions on Power Delivery, 28 (2). pp. 637-648. ISSN 0885-8977

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

System control for dc microgrids with variable generations and energy storage is proposed in this paper. An autonomous three-level control strategy is proposed for dc microgrids with selective slack terminal(s) assigned to each operation level. The system operational status is acknowledged via the common dc voltage and the transitions between different operational levels are triggered by its variation. A four-terminal sample dc microgrid system with a grid-connected voltage-source converter, a wind turbine, an energy storage system, and dc loads are established and a specific control scheme is outlined to demonstrate the proposed strategy during various operating conditions, such as load step, generation fluctuation, islanding, grid reconnection, load shedding, and generation curtailment. The control strategy and the specific scheme are validated by experimental results conducted on a prototype dc microgrid system.