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ABSTRACT 
We investigate the low density behaviour of fluids that interact through a short-ranged attraction 

together with a long-ranged repulsion (SALR potential) by developing a molecular thermodynamic 

model.  The SALR potential is a model of effective solute interactions where the solvent degrees of 

freedom are integrated-out.  For this system, we find that clusters form for a range of interaction 

parameters where attractive and repulsive interactions nearly balance, similar to micelle formation 

in aqueous surfactant solutions.  We focus on systems for which equilibrium behaviour and liquid-

like clusters (i.e. droplets) are expected, and find in addition a novel coexistence between a low 

density cluster phase and a high density cluster phase within a very narrow range of parameters.  

Moreover, a simple formula for the average cluster size is developed.  Based on this formula, we 

propose a non-classical crystal nucleation pathway whereby macroscopic crystals are formed via 

crystal nucleation within microscopic precursor droplets.  We also perform large-scale Monte Carlo 

simulations, which demonstrate that the cluster fluid phase is thermodynamically stable for this 

system. 

Keywords: Liquid mixtures, clustering, competing interactions, mesostructure, non-classical 

nucleation 

 

1. Introduction 
Clustering in fluids is important in many areas of science and engineering, such as in protein 

solutions1, pharmaceutical crystallisation2, biomineralisation3, and nanotechnology4-6.  For example, 

the aggregation of proteins influences their structure and function and is associated with specific 

diseases7, including neurodegenerative diseases such as Alzheimer’s.  In addition, proteins are 

thought to form “rafts” in cell wall membranes8-10.  Moreover, exploiting clustering and self-

assembly of peptides or nanoparticles in solution is considered to be a useful method for the design 

and manufacture of novel nanomaterials, such as peptide-based bio-scaffolds11 or novel sensors12. 

Naturally, understanding cluster formation is fundamentally interesting and important, but 

particular difficulties arise when the clustering particles, and perhaps even the clusters themselves, 

cannot be imaged directly in-situ.  For these cases, statistical thermodynamic models of clustering 

take on increased importance. 

Perhaps the simplest model that exhibits clustering is the “short-range attractive, long-range 

repulsive” (SALR) potential model.  This one-component model of solute particles, where the solvent 

degrees of freedom have been integrated-out, involves only spherically-symmetric pair-interactions, 

and as such can be considered a “simple” fluid.  That such a simple model can give rise to behaviour 

normally associated with more complex molecules, such as surfactants or block copolymers, 
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provides the impetus to understand its behaviour in more detail.  A great deal of theoretical, 

simulation and experimental work has focused on SALR systems for which the range of the attractive 

interactions is short compared to the particle “core” diameter because this regime is considered to 

be relevant for protein solutions.  Colloid-polymer mixtures with effectively similar interactions 

(where the polymer radius of gyration is small compared to the colloid diameter) are often studied 

to provide insight in this regime because the particles and/or clusters can be imaged directly1. For 

these systems, characterized by  ~ 0.1, where  is the ratio of the range of the attraction to the size 

of the core, interesting behaviour arises when the strength of attractive interactions is several times 

   , where    is the Boltzmann constant and   is the absolute temperature (let’s call this energy-

scale ratio ).  This behaviour is generally characterized by the formation of small clusters with 

intermediate-range order at low solute concentrations, which tend to elongate and form arrested 

networks and gels as the particle concentration is increased1,13-22.  Similar arrested network 

formation is also observed in the absence of long-ranged repulsive interactions23 (e.g., in “diffusion 

limited aggregation” and attractive glasses), and in the absence of short-ranged attractions21 (e.g., in 

repulsive, or “Wigner”, glasses).  This non-equilibrium behaviour masks the underlying equilibrium 

structures that would result from competition between attraction and repulsion.  Moreover, 

because the length scales, and hence time scales, are very different between colloidal and protein 

domains, it is not always clear whether the directly observed colloidal structures are generally 

representative of protein clusters.  As such, the physics of equilibrium SALR structures is less well 

understood. 

One important aspect of this physics involves so-called “two-step” crystal nucleation, whereby 

crystal nucleation occurs within a liquid-like cluster24-27 (that is, the liquid cluster nucleates and 

forms first on short time-scales, followed by crystal nucleation within the cluster on longer time-

scales). If the timescale for crystal nucleation is much longer than cluster formation this two-step 

process can only occur if microscopic liquid-like precursor solute clusters can be stabilized, and is 

another reason for the interest in SALR fluids.  This two-step process is considered distinct from 

classical crystal nucleation where solute aggregation and crystal structure formation occur 

simultaneously, and is associated with diseases such as sickle-cell anemia28,29. It is also suggested to 

occur in some molecular mixtures such as glycine solutions30,31, and so could be important for the 

design of continuous crystallization processes for pharmaceuticals2.  Equilibrium SALR structures can 

be expected to arise naturally when  ~ 1 and  ~ 1, since for these systems local re-ordering can 

easily occur.  Unfortunately, there is no experimental work in this region of the phase diagram with 

colloid-polymer mixtures, and consequently our understanding of equilibrium clustering and two-

step nucleation of the SALR model is incomplete.  However, the recent work of Bartlett and co-

workers32,33 with uncharged colloid-polymer mixtures with  ~ 1 suggests that such experiments 

might be feasible. 

Many approaches have been used to examine equilibrium SALR systems, from Monte-Carlo 

simulation34 through to thermodynamically consistent integral equation approaches20 and density 

functional theories35, yielding insight into specific systems such as clustering in 2-dimensional films36 

and the 3-dimensional SALR system considered in this work37.  A good introduction of this body of 

work is provided by Wilding and Archer34. While much has been learned about fluid structure and 

thermodynamics at intermediate densities, both for disordered cluster fluid states and ordered, or 

“modulated”, cluster phases at intermediate density34,35,37-39, the low density cluster fluid phase is 

much less well studied. To be clear, we define a disordered cluster fluid phase as one that is 
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isotropic, but actually consists of a uniform dispersion of large clusters of particles.  The aim of this 

work is to better understand this low density part of the equilibrium SALR phase diagram. 

For these SALR systems, the Lifshitz point and lambda-line are sometimes analyzed37,40,41, which 

often involves locating mechanical instabilities in the uniform fluid without clusters.  However, these 

techniques are incapable of providing the precise location, or clarifying the nature, of associated 

phase transitions, which are of thermodynamic origin. 

Monte Carlo simulations have revealed that for the equilibrium SALR fluids of interest here,  ~ 1, a 

series of modulated phases with increasing density are expected34, starting with an ordered phase of 

spherical clusters (a cluster solid), followed by columnar, lamellar, and ordered columnar and 

spherical bubble phases. All these phases occur at densities “intermediate” between the uniform 

vapour and liquid phases.  The usual bulk vapour-liquid transition is metastable with respect to these 

modulated phases.  However, Archer and Wilding34 do not investigate the disordered cluster fluid 

phase at low density. They clearly do find states corresponding to a single spherical cluster with 

liquid-like density surrounded by a vapour, but due to the periodic boundary conditions they use, 

such isolated clusters correspond to an ordered cluster (simple cubic) solid phase, not a cluster fluid 

phase.  On the other hand, molecular simulations13-16 and experiments17-19 in the region where  ~ 

0.1 demonstrate that small irregular clusters exist at low densities even if they are not always at 

equilibrium42. Our interest here is in understanding how this behaviour is changed for  ~ 1, where 

equilibrium structures are expected. 

Spatially ordered aggregates can also be modeled using standard density functional or self-

consistent field-theoretic approaches35,38,39.  However, the disordered cluster fluid phase we 

investigate here, consisting of a dispersion of liquid-like droplets, has so far avoided treatment using 

these methods.  From a theoretical perspective, the likely reasons for this are that within this phase, 

the clusters themselves behave like mesoscopic fluid particles, and therefore there are strong, long-

range correlations in the pair density.  The usual mean-field approaches do not capture these long 

wavelength correlations and so do not exhibit the correct physics.  For example, Jiang and Wu43 

attempt to investigate a cluster fluid at low density for a similar SALR potential to that investigated 

here using mean-field DFT.  They find a non-uniform solution to their model, consisting of a spherical 

cluster at the origin surrounded by a uniform vapour, and identify this solution with the cluster fluid.  

They take this as an indication that the system will form an isotropic dispersion of clusters.  This 

approach is similar to the earlier work for surfactant micelles by Stillinger44 for aqueous surfactant 

systems.  However, the difficulty with this interpretation is that the vapour surrounding the central 

cluster is “cluster-less”, because the mean-field DFT they use does not describe a uniform dispersion 

of clusters.  That is, it cannot generate the pair or higher body distribution functions of a cluster 

fluid. Note, the difference between an isotropic clustered and “un-clustered” fluid is not the 

equilibrium density profiles, which can be identical, but rather the correlations within the systems.  

This seems to indicate that conventional density functional theories do not properly account for the 

long range correlations that lead to the formation of these clusters. 

Bomont et al.20 use a thermodynamically self-consistent integral equation theory to analyze the 

onset of equilibrium clustering at intermediate densities in the approach to modulated phases, 

signified by mechanical instabilities (the lambda-line), in the  ~ 0.1 regime of SALR fluids. The 

advantage of this approach, compared to other integral equations, is illustrated further by Bomont 

and colleagues41,45 and Kim et al.46, who are able to find solutions to their integral equations in 

regions of parameter-space at intermediate densities where most other approximate integral 
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equations fail.  Indeed, Bomont et al. find intriguing jumps45 in the first peak of the radial distribution 

function for a range of SALR parameters similar to those used here, indicative of a potential phase 

transition from a uniform phase of clusters to a non-uniform (modulated) clustered phase at 

intermediate densities.  Despite the significant advance this approach brings, the nature of this 

phase transition is not clear and no results are provided at low density.  We return to this work in 

our summary, and re-interpret their results in light of our findings. 

From a simulation perspective these phases are difficult to treat due to their size (because of the 

longer range of the interactions when  ~ 1, compared to  ~ 0.1, each cluster can involve hundreds 

to thousands of particles, and many clusters need to be simulated for a cluster fluid), the existence 

of long-range interactions which requires lengthy summations over particle pairs, and poor sampling 

of configurations unless advanced cluster-move algorithms are used that treat separately the length-

scales involved.  These considerations, when combined, lead to expensive simulations. 

Interestingly, a straightforward treatment of the low density SALR cluster fluid is achieved through a 

kind of micelle theory47-51. Groenewold and Kegel52 applied this kind of method to colloidal 

dispersions modeled with a more sophisticated variant of the SALR model.  Their model includes the 

effect of charge binding at a colloid surface, and so the long-range screened-coulomb repulsion is 

generated in a more self-consistent manner.  Their main result concerns the charge of a colloidal 

cluster, and they do not consider phase behaviour more generally.  Later, Foret and Destainville53 

applied this kind of approach directly to an SALR fluid, focusing on a region of the phase diagram 

analogous to pre-micellization.  However, despite this earlier work, the wider phase behaviour of the 

equilibrium SALR fluid at low density remains unexplored. 

In summary, the modulated, or ordered, equilibrium phase behaviour of SALR fluids at intermediate 

density is well studied, but little progress has been made with the disordered cluster fluid phase at 

low density for  ~ 1.  In the next section, we develop a molecular thermodynamic model that goes 

beyond the mean-field level and is able to describe this disordered cluster fluid phase.  We then 

relate this model to theories for micelle formation in surfactant solutions.  In section 3, we apply this 

thermodynamic model to examine the low density phase behaviour of these SALR systems.  In brief, 

for the same 3-dimensional SALR system studied by Archer et al.37, we find micelle-like behaviour at 

low density and identify a critical cluster concentration.  We expect that transitions from the cluster 

fluid phase to ordered (modulated) phases occur at higher densities.  Interestingly, we locate a novel 

cluster-vapour to cluster-liquid phase transition over a very narrow range of SALR parameters with 

weaker attractive interactions.  We also remark on a potential mechanism for two-step non-classical 

crystal nucleation.  In section 4, we compare results of the thermodynamic model with large-scale 

Monte Carlo simulations at a single state point, and conclude with a summary of this work in section 

5. 

 

2. Theory 

2.1 SALR fluid model 

The system of interest in this work comprises spherical particles interacting through a core of 

diameter d (taken to be a hard sphere here) plus a short-range attraction and a longer-ranged 

repulsion (the SALR potential), 

)()()( xxx SALRHS    (1) 
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where drx / and r  is the separation between a pair of particles. A convenient form of the SALR 

potential is provided by the combination of two Yukawa potentials for x> 1, 

))(exp())(exp()( 11  xz
x

A
xz

x

A
x r

r
a

a
SALR   (2) 

where  = 1/(kBT).  The parameters Aa and Ar(both > 0) determine the strength of attractive and 

repulsive interactions, respectively, relative to kBT, while the parameters za and zr (with za>zr) 

determine their range.  So, four independent parameters are needed to define the SALR model, 

including temperature.  A fifth independent parameter is the overall system density, b.  The SALR 

potential for a set of parameters investigated in this work (Aa= 2.0, Ar= 0.5, za = 1.0, zr = 0.5) is shown 

in Figure 1a.  The choice za = 1.0 should result in equilibrium clusters rather than non-equilibrium 

arrested states. 

In this work, we fix Ar = 0.5, za = 1.0, and zr = 0.5, and consider the effect of varying Aa.  In 

experiments with colloid-polymer mixtures, this choice corresponds to keeping the temperature, 

colloid charge and solvent dielectric constant fixed (thus fixing Ar and zr), and varying the 

concentration (but not the radius of gyration) of polymer such that the depletion potential strength 

(but not range) induced by the polymer is varied.  For other experimental systems this set of 

parameters will correspond to other experimental constraints, and possibly involve manipulating the 

temperature.  For example, for modeling mesostructure in liquid mixtures the long-ranged repulsive 

term would correspond to a model of the screened coulomb interaction between solutes caused by 

charge dissociation of the solute in the solvent, while the short-ranged attractive term might 

correspond to hydrogen bonding or other short-ranged dispersive interactions between solute 

molecules. 

2.2 Thermodynamic model 

We take an approach originally inspired by earlier work by one of us54,55 concerning a coarse-grained 

density functional theory of adsorption.  Our approach might also be called a ‘minimal’ or an ‘order 

parameter’ model37.  Ultimately, we find that our molecular thermodynamic model resembles earlier 

models of micellization47-51 in some respects. 

We assume the disordered cluster fluid phase is composed of spherical clusters of particles (liquid-

like droplets) with body-density l= nl/Vc and cluster density c= nc/V dispersed in a vapour of density 

v (here, nl is the average number of particles per cluster of volume Vc, nc is the average number of 

clusters in system volume V, and v is the average density of particles in the vapour outside the 

clusters).  Actually, the system is not phase separated into vapour and liquid droplets per se; more 

properly, the vapour and clusters are all part of the same phase and cannot be treated separately. In 

general clusters are polydisperse in their size and shape.  However, on average they are statistically 

identical, and so we choose them to be spherical and monodisperse, with diameter cd =2Rc; 

therefore, the density profile )( Rr cP of a cluster centered at position R is 

|)|()( RrRr  clc RP   (3) 

where  is the Heaviside step-function.  We show later that the polydispersity of the clusters is not 

expected to be very great for our model, and hence we are justified in neglecting fluctuations in size 

and shape polydispersity at this stage.  We also assume for convenience a discontinuous, or sharp, 
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interface between the clusters and the background vapour, although this is not an essential feature 

of the model.  The volume fraction  of the clusters is 

l

vb
ccV







  (4), 

where Vc=dc
3/6 is the cluster volume. 

We begin the development of the molecular thermodynamic model by partitioning the 

configurational Helmholtz free energy density fc of the cluster fluid phase into energetic and entropic 

contributions 

)()( mixselfggcgccselfccc ssTuuuuTsuf   (5) 

where uself and sself are the internal, or self, energy and entropy densities of a cluster, ucc, ucg and ugg 

are the energy densities arising from cluster-cluster, gas-cluster and gas-gas interactions, and smix is 

the entropy density of mixing of clusters and gas.  In turn, to parallel the development of micellar 

theories, we group these energy and entropy contributions into two free energy contributions, 

mixselfmixggcgccselfself ffTsuuuTsuf  )()(   (6) 

namely 
selff , which describes the free energy density of particles within the clusters, and

mixf , which is 

the mixing free energy density of gas particles and clusters.  In the following, we develop simple 

expressions for 
selff  and 

mixf in terms of the model parameters, b v, l and c. 

Self-free energy 

The self-free energy of the clusters is composed of two terms 

)( selfselfcself TSUf    (7) 

where selfU  is the interaction energy between particles in a cluster, i.e. its self-energy, and selfS  is 

the entropy of the particles within a cluster.  To estimate selfU , we assume that the correlations 

between particles within a cluster are similar to those within a bulk liquid.  Taking a “simple liquid” 

view, we choose a hard sphere fluid as reference, and so the interaction energy of particles within a 

cluster is given by 



 





)(),;();(2
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2
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2 rPdrgdrrdr

'PPdd'gd''ddU

dclHSSALR

cclHSSALRself



 RrRrRrrrrrr
 (8) 

where ),;( drgHS  is the bulk hard sphere radial distribution function for hard spheres of diameter 

d at density , which we approximate using the Percus-Yevick (PY) theory56, and Pdc(r) is related to 

the form factor of the clusters and represents the geometric convolution of two cluster density 

distributions. 

The self-entropy can be written in terms of the cluster density as 
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),,()( cvlAclvcself dsAsVS     (9) 

In the first term on the left hand side sv is the entropy density of a uniform liquid at the same 

average density as the cluster, while in the second term sA is the entropic contribution per cluster of 

the cluster-gas interface.  Here, we omit higher order contributions to the cluster entropy caused by 

fluctuations in the size of the cluster.  This is discussed in more detail later, and we will see that 

cluster size fluctuations are not very large for the system under consideration here. 

For the first term we once again take a simple liquid view and set 

),()( dss lHSlV    (10) 

where ),( ds lHS   is the entropy density of a hard sphere fluid with particle diameter d at the same 

fluid density. In this work we neglect the interfacial entropy per cluster, SA, for convenience. 

Mixing free energy 

We deal with the contribution of the configurational energy density contribution to the mixing free 

energy first, which is given exactly by the usual energy equation56, 
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  (11) 

where )(rgvv  is the radial distribution function (rdf) between particles in the vapour, )(rgvc is the 

rdf between particles in the vapour phase and cluster centers, and )(rgcc  is the cluster center-

cluster center rdf.  We now describe our approximations for these rdfs. 

First consider taking the “simple fluid” view that locally fluid structure can be well approximated by a 

hard sphere reference fluid, in this case an additive hard sphere mixture of large spheres 

(representing clusters) and small spheres (representing particles in the gas).  Unfortunately, this will 

not be accurate because it ignores effective interactions in the system.  The effective interaction 

between two non-overlapping clusters whose centers are separated by r=|R-R’| is 

  )()()()( ''P'P'dd'U SALR

eff

cc RrrrRrrrRR 

  

(12) 

A typical form of this effective cluster–cluster interaction is plotted in Figure 1b, along with its 

corresponding Mayer function.  It shows that typical clusters experience a strong mutual repulsion at 

a range much larger than dc, and hence do not approach each other closely.  The effective 

interaction between a vapour particle and a cluster separated by r is 
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  )()()( ''P''d'U SALR

eff

vc RrrRrRR    (13) 

A typical form of this effective vapour–cluster interaction is plotted in Figure 1c, along with its 

corresponding Mayer function.  It shows that gas particles experience a weak repulsion around 

clusters at a range somewhat larger than dc, but much less than the range at which clusters 

experience a strong mutual repulsion.  Consequently, if we are to represent the system in terms of a 

hard sphere mixture, this system corresponds approximately to a highly size-asymmetric hard 

sphere mixture with significant negative non-additivity.  For the case shown in Figures 1b and 1c the 

non-additivity parameter would be ~-0.5. Unfortunately, there are no robust analytical theories 

for the radial distribution functions of such systems in the literature.  We proceed by making the 

following approximations for the rdfs, 
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(14) 

where ),,,;( 2211 ddrgmix

xx  are the rdf components of an additive binary hard sphere mixture 

(which we approximate in terms of the PY functions obtained from a Fundamental Measure 

Theory55) with component densities 1 and 2 and component diameters d1 and d2 respectively, and 
min

xxr  are the separations corresponding to the minima of ))(exp( rUeff

xx . 

Note that the model for the energy density is multi-scale in the sense that it simultaneously includes 

radial distribution functions on primary particle and cluster length-scales, with the cluster-cluster 

and gas-cluster rdfs determined through equations (19) to (21) where equations (19) and (20) also 

incorporate these multiple scales. 

For a uniform fluid without clusters we have 

),;()( bHSSALRb drgrrdru  2

0

22 




  

(15) 

We now deal with the mixing entropy of the system; this is where we introduce the key ingredient 

that generates a non-mean-field theory similar to theories of micellization.  The entropy of mixing 

accounts or the entropy of the coarse-grained system 

comc

eff

cccv

mix

HSmix Sdddss    ),,,,(   (16)  

The first term on the left-hand side approximates this entropy in terms of an asymmetric binary hard 

sphere mixture with significant negative non-additivity, where the clusters are treated as large 

spheres with diameter dc, and the primary particles are treated as small spheres with diameter d, 

but the cluster-cluster effective interaction corresponds to an effective diameter eff

cd .  We 

approximate this effective diameter in terms of the Barker-Henderson prescription56 
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



0

))(exp(1( rUdrd eff

cc

eff

c    (17) 

The second term in (16) is a center of mass correction, which ensures the coarse-grained clusters 

have a precisely defined position, and is described later. 

Clearly, this approximation for smix does not take into account the effect of eff

vcU  on the distribution 

of primary particles surrounding each cluster.  Nor does it take into account the effect of the direct 

interaction between primary particles in the vapour on the mixing entropy.  Nevertheless, it will be 

accurate for a dilute system with low vapour and cluster densities and is a convenient approximation 

at this stage. However, we are not aware of any well-tested thermodynamic theories for the entropy 

of such a hard sphere mixture, and so must develop our own prescription here.  Fortunately, for this 

particular SALR system a very straightforward and convenient approximation can be found. 

For this particular kind of hard sphere mixture consider the density profile of small particles 

surrounding the large particles.  Provided this density profile is unaffected by most typical large 

particle configurations, then to a good approximation this system can be de-coupled and its entropy 

written accurately as 

),(),(),,,,( c

eff

cHSgHS

eff

cccv

mix

HS dsdsddds  
  (18) 

where g = v/ is the vapour density between clusters, and  =1 –  is the volume fraction of 

vapour.  This approximation becomes more accurate as the size asymmetry and negative non-

additivity increase. Once again, this approximation omits the contribution to the entropy of the 

primary particles due to their interface with the clusters. Because the cluster volume fraction (

63 /ccd  ) is typically quite low (< 0.1), this interfacial entropic contribution should be quite 

small. 

Each hard sphere entropy term includes an ideal gas contribution and an excess hard sphere term, 

),())(ln(),()(),(  dfTkdffdTs PYex

HSB

ex

HSidHS  1
 

(19) 

Note that we have omitted terms in the ideal gas free energy density involving the thermal de 

Broglie wavelength of the primary particles, which are not required for this study on equilibrium 

phase behaviour. For the excess hard sphere free energy density, we use the PY compressibility 

result56, which is quite accurate for packing fractions,  = d3/6, up to the hard sphere freezing 

transition 

2)1(

)2/1(3
)1ln(/),(









df PYex

HS
  (20) 

The center of mass correction, comS , arises because the coarse-grained clusters are required to have 

a well-defined position so that the entropy of mixing of the cluster and vapour can be evaluated.  

We define the cluster position by its center of mass.  However, the cluster self-entropy density 

defined so far through equation (10) does not have a constrained center of mass; equation (10) 

simply refers to an equation of state for a bulk hard sphere fluid.  Therefore, the cluster self-entropy 

density must be corrected to take account of this center of mass constraint.  The effect of this 
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constraint on the cluster self-entropy can be estimated by considering how the position (i.e. the 

center of mass) of a cluster with M particles can be constrained to coincide with a specified cluster 

center position s.  To achieve this, we can consider constraining the position of one of the particles 

in a cluster such that it counter-balances the positions of the other M-1 particles in the cluster to 

produce a center of mass at s.  However, we must remember that this particular particle must 

remain part of the cluster as defined by the operational definition.  Therefore its position is 

constrained to lie within a region Vc, the volume of the cluster, in order for it be counted as part of 

the cluster.  Hence, the free energy of the system is increased by a factor approximately equal to 

 ccomB VPTk /ln  (21) 

per cluster, where comP  is the probability that the sum of the positions of the other M-1 particles 

(with respect to s) lies within a region such that it can be counter-balanced by the final particle, 

which is constrained to lie within Vc.  The factor Vc in equation (21) arises because the position of this 

last particle is no longer free within Vc, but is instead constrained such that it counter-balances the 

cluster at s.  Hence the configurational phase space available to the cluster is reduced by a factor of 

Vc.  To make analytical progress, we make the simplification that Vc to be spherical (i.e. all particles 

within the cluster lie within a spherical region of radius 3 43 /cc VR   centered at s) and take the 

case of an ideal gas.  For this spherical ideal gas case the probability distribution function for the sum 

of positions, relative to s, of the M-1 particles corresponds to a random walk in 3-dimensional space 

of random step length less than Rc, and is given simply by IFT[((k;Rc)/Vc)
M-1], where (k;Rc) is the 3-

D Fourier transform of the Heaviside step-function of radius Rc.  The probability this lies within a 

region of radius Rc is 

 



cR

M

cccom VRkIFTdrrP
0

124 ]/);([   (22) 

We now seek an analytic approximation to this.  For large M this distribution function in k-space is 

concentrated around k = 0.  By expanding the k-space function around k = 0 in a Taylor series  


6

1

22

g

cc

Rk
VRk /);(  (23) 

where gR  is the radius of gyration of the cluster, we obtain 

 
cR

gcom kRMIFTdrrP
0

22 614 )]/))(([exp(  (24) 

Evaluating the 3D-Inverse Fourier transform gives 

)/exp( ar
a

drrP
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2

1
4 2

3
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



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
 


  (25) 

where 612 /)(  MRa g
. Integration gives 
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The resulting approximation for the center of mass correction is then 
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Note that in the limit of diverging cluster size cScom vanishes. 

For the uniform fluid of density b without clusters to be consistent with the above approximations 

for the cluster fluid we model the entropy density as 

),( bHS dss   (28) 

Model summary 

Our final expression for the configurational Helmholtz free energy density for the cluster phase is 
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(29) 

where i,j stand for cluster (c) or vapour (v), Pv(r) = (r), and M = ldc
3/6 is the average number of 

particles per cluster.  Note that the logarithmic terms involved in the centre of mass constraint 

(ln(Pcom/Vc)) and the ideal gas free energy of clusters (ln(c)) can be combined to produce a 

dimensionless argument. 

 

For a uniform phase without clusters this becomes 

),(),;();()( bHSbHSSALRbb dTsdrgdrrdrf   


2

0

22  (30) 

For a uniform bulk liquid phase this approximation is reasonable provided the range over which SALR 

varies is large compared to typical nearest neighbor separations, i.e. the liquid behaves like a simple 

liquid.  Accordingly, we only consider an SALR fluid with relatively long-ranged interactions. For a 

uniform bulk vapour phase this approximation becomes increasingly accurate with reducing density, 

where the entropy dominates. 

A system separated into bulk liquid and vapour phases has free energy density 

)()()( glb fff  

 

(31) 
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The free energy density of the cluster phase (equation (29)) correctly tends to this limit for very large 

clusters where 0c . 

 

2.3 Solving the model 

We wish to find the minimum of this free energy model with respect to the primary variables; v, l, 

c, at fixed overall density b.  Accordingly, we set 

0












b
x

f



 (32) 

for each primary variable x = g, l, and c.  These equations can be solved using a Newton-Raphson 

method where the differential terms are approximated by central finite differences. 

We also apply physically reasonable constraints to the solution space as follows; the cluster volume 

fraction, , is constrained to be less than the hard sphere fluid volume fraction at fluid-solid 

coexistence, i.e. 496.0 ; and the number of particles in a cluster, M, is constrained to be at least 

2.0, as a cluster cannot be defined for fewer particles. 

 

3. Results 
We study the same 3-dimensional SALR fluid studied earlier by Archer and co-workers37. This will 

allow us to compare our results with theirs.  Specifically, we set Ar= 0.5, za= 1.0, and zr= 0.5. Results 

are obtained for a uniform fluid and the disordered cluster fluid using equations (29) and (30) for the 

configurational Helmholtz free energy density for a range of bulk densities, b, and values of Aa.  The 

Newton-Raphson method is used to minimize the free energy density of the cluster fluid phase.  The 

configurational chemical potential, , and pressure, P, are obtained by (central) finite differences 

using the standard thermodynamic relations  = df/db and P = b – f.  For a given chemical 

potential, where two or more phases exist the equilibrium phase is the one with the highest 

pressure; the other phases are metastable. 

 

3.1 The cluster fluid phase diagram 

Figure 2 shows the phase diagram generated by this model at low densities, b< 0.1.  We find that 

the cluster fluid forms for 1.55 <Aa< 2.51 when b< 0.1.  This parameter range corresponds well with 

those where modulated phases are predicted to form at higher densities for this system, according 

to mean field DFT methods37.  We will now discuss the features of this diagram.  All parameters are 

expressed in their reduced form, with an energy scale of  and length scale of d. 

Micelle-like behaviour 

Figure 2 shows the cluster fluid phase separated from the uniform vapour (with pre-clusters) by the 

critical cluster concentration (black solid line). This is typical behaviour for micellar solutions. To 

explain this behaviour we choose initially to examine results at Aa = 2.0.  Figure 3a shows how the 

free energy density of the cluster fluid phase varies with cluster density for three bulk densities close 

to the CCC. Here, the cluster fluid free energy density is minimized with respect to the liquid and 

vapour densities. When the bulk density is below the CCC the free energy minimum occurs when the 
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cluster density is nearly zero (corresponding to a bulk vapour with pre-clusters, i.e. the uniform fluid 

without clusters is always unstable relative to the cluster fluid or uniform vapour with pre-clusters).  

Above the CCC, the free energy minimum shifts to much larger cluster densities.  To understand this 

behaviour we analyze (29) in terms of micelle theory49.  First we re-write the free energy function in 

terms of the vapour and cluster densities as 

),()())(ln())(ln(),( cv

ex

mixcselfccvvcvc ffLf   11 3  (33) 

where the first two terms on the right are the ideal gas free energy density of the vapour – cluster 

mixture, the third term is the self-free energy density of clusters and final term accounts for the 

remaining “excess” mixing free energy density.  Note there are several novel features in this 

expression.  First, micelle theories typically set the excess mixing free energy density to zero and 

consider clusters of all sizes.  Here, instead, we include approximations for both the configurational 

energy and entropy in the excess mixing free energy, but neglect fluctuations in cluster size.  Second, 

theories of micellization typically set L = d arbitrarily, whereas we find that L3 = Vc/Pcom (i.e. the 

length-scale L) arises as a consequence of the cluster center of mass constraint, Scom.  Finally, this 

derived expression contains no adjustable parameters.  In contrast, micelle theories usually contain 

adjustable parameters that are calibrated to reproduce experimental data. 

The vapour and cluster densities are linked through 

cvb M   (34) 

where M = lVc, and Vc is given by (4).  If we fix l and M equal to their values at the CCC, then we 

can simplify the analysis as follows.  Minimizing (33) with respect to c gives 

)exp( GM

vc     (35) 

where G is the driving force for aggregation 
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Note that self, which is a constant now that l and M are fixed, includes a logarithmic term that 

balances dimensions in (35).  If we specify the critical cluster concentration as the bulk density for 

which particles are divided equally between the vapour and clusters (i.e. when v= Mc), then we 

find 
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which in turn leads to 

))(exp( ccc

M

ccc

vv
c GG

M





















1

2
  (38) 

At low cluster and vapour densities, the excess mixture terms are insignificant, and we are left with 
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This shows that below the CCC, when most particles are in the vapour, the cluster density grows 

geometrically with the vapour density as the CCC is approached with large exponent M-1.  Close to 

and below the CCC, we can write this as  

))/)((exp( cccv
v

c M
M




 211    (40) 

which is observed as nearly exponential growth in the cluster density just below the CCC. However, 

above the CCC, nearly all the particles are within a cluster, and in this case we observe nearly linear 

growth 

M
b

c


   (41) 

These two very different growth regimes result in a sharp “knee” in the variation of cluster density 

with bulk density close to the CCC.  We call clusters that form below the CCC ‘pre-clusters’ to 

distinguish these two very different regimes.  This behaviour is illustrated in Figures 3b and 3c for Aa 

= 2.0. Figure 3b shows how the variation of cluster density with bulk density changes from being 

almost exponential below the CCC to almost linear just above the CCC.  In experiments with micelle 

forming surfactants the CMC is often determined from plots of this kind by extrapolation of the 

linear trend above the CMC down to the abscissa.  Figure 3c shows how cluster properties change in 

the vicinity of the CCC.  Above the CCC they are nearly constant, while below the CCC they vary 

much more quickly, which provides further motivation for distinguishing clusters from pre-clusters.  

Experimental or simulation methods unable to resolve pre-clusters at the very low cluster 

concentrations in the exponential (or geometric) growth regime would erroneously conclude that 

this transition corresponds to a second order one, as suggested by Figure 3a.  In fact, the free energy 

is continuous, except in the limit M ->∞, and as such the CCC is not a true phase transition (the CMC 

is sometimes referred to as a pseudo phase transition).  Figure 2 shows that the CCC is less than the 

density of the bulk ‘un-clustered’ vapour-liquid binodal density, which is metastable, in this range of 

SALR parameters. 

Figure 3d shows how the pressure of the bulk vapour and the cluster fluid vary with chemical 

potential. Below the CCC pre-clusters are very slightly more stable than a uniform vapour phase 

without any clusters.  At the CCC, at b = 0.003155 in this case, the difference between the free 

energy of the uniform vapour without pre-clusters and the cluster fluid are indistinguishable on the 

scale of this plot because the cluster density is so low.  Above the CCC the cluster fluid branch clearly 

separates from the uniform vapour phase.  The cluster fluid chemical potential and pressure vary 

very slowly with bulk density, resulting in a highly compressible fluid. 

Cluster size and a non-classical crystal nucleation pathway 

Figure 4a shows how the cluster size varies with Aa and bulk density above the CCC. We see that the 

cluster size grows with increasing Aa, and it increases very slowly with increasing bulk density 

beyond the CCC.  Figure 4b shows how the energy and entropy contributions to the free energy 

density vary with cluster size at Aa = 2.0 and b = 0.02, obtained by minimizing the free energy with 

respect to g and l at fixed b, holding dc fixed at the given value.  The cluster density is then given 
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via equation (4).  Over this range of cluster sizes, which includes the minimum size at dc= 13.5, the 

entropy and energy combine to produce a relatively flat free energy profile.  Interestingly, the 

energy and entropy minima are located at almost precisely the same cluster diameter.  This 

coincident behaviour is quite general for the cluster fluid phase and occurs because the energy and 

entropy densities are coupled through the background vapour density g, which is also minimized at 

the equilibrium cluster size.  In essence, the cluster fluid energy density, which is dominated by the 

cluster self-energy, is minimized at the equilibrium cluster size.  For larger or smaller clusters the 

cluster self-energy increases, increasing the chemical potential.  Hence the background vapour 

density increases to match the chemical potential of particles in the cluster.  In turn, the entropy 

density of the system is dominated by the vapour entropy, which produces a minimum coincident 

with its density minimum and the energy minimum. 

Taking this analysis a step further, if the cluster self-energy is minimized at equilibrium, then taking 

the cluster volume fraction  and body density l, as fixed, the cluster size can be determined from 

equation (8) by setting ∂uself/∂dc = 0, which gives 
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Using equation (3) results in a relatively straightforward estimate for the equilibrium cluster 

diameter 

01 2

2

3 
























 ),;();( )(

lSALR

d

d c

drgdr
d

r
rdr

c

  (43) 

where we have replaced the approximate rdf used in the thermodynamic model, represented by the 

hard sphere function ),;( lHS drg  , with the exact radial distribution function of the uniform liquid 

at the same body-density as the cluster, ),;()(

ldrg 2 . This more general equation might find use in 

experiments, on colloidal dispersions for example, if the cluster diameter can be measured by an 

appropriate kind of microscopy for a range of experimental parameters, since then it might be 

possible to invert equation (43) to obtain the effective inter-particle interaction potential. 

Figure 4c shows the predictions of this approximation against results for the full model.  In each case 

we set ),;()(

ldrg 2 = ),;( lHS drg   where l = 0.86, representing approximately the liquid density 

at Aa= 2.0. The agreement is quite satisfactory. Using equation (43), dc is estimated to diverge at 

around Aa=2.51. However, for Aa greater than about 2.19 the cluster liquid density exceeds the hard 

sphere fluid freezing density and the Lennard-Jones fluid freezing density, which are both close to a 

reduced density b~ 0.935.  Consequently, we expect clusters in the region Aa> 2.19 to be solid 

(indicated by a dotted line in Figure 2), and, therefore, for Aa> 2.19, the CCC would correspond to a 

bulk vapour - solid particle transition. To be clear, this is an estimate of the location of this transition, 

from liquid-like clusters to solid-like clusters. Its precise location is not important for this work, but if 

required could be evaluated by reformulating the model in terms of solid clusters, and comparing 

the resulting free energies with those of this fluid model. 

Interestingly, equation (43) suggests that a change in the internal state of the clusters (i.e. from 

liquid to crystalline solid) along the CCC line at this point, which will be accompanied by a 
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discontinuous change in the radial distribution function, will likely result in a discontinuity in the 

cluster diameter.  In turn this will result in a different estimate for the value of Aa at which the 

cluster size diverges, most likely lower than the present one. Indeed, given that the cluster size 

depends on the rdf through equation (43) it is conceivable that, for some systems, the cluster size 

can diverge at the point at which the clusters themselves solidify.  This could have important 

consequences for crystal nucleation from solution of solutes that possess these kinds of effective 

SALR interactions.  For example, one can imagine formation of a cluster fluid phase with liquid-like 

cluster droplets, a fast process, followed by a potentially slower process of droplet crystallization, 

which then in turn could prompt a divergence in crystal size towards formation of macroscopic 

crystal particles in solution.  This proposed two-step nucleation process is very similar to that 

described by Vekilov and others24-27. It clearly derives from the two-step nucleation process 

described by ten Wolde and Frenkel24, in the context of protein crystallization, concerning systems 

without long-range repulsions where critical fluctuations in a metastable fluid phase lead to an 

enhanced probability of crystal nucleation. In that particular work, the division in timescales 

between cluster formation and crystal nucleation within clusters, which has not been established 

here, is clear.  An additional ingredient we add to the mechanism here concerns equation (43), 

which suggests the equilibrium crystal size can be different to the pre-cursor cluster size because of 

the change in rdf.  Moreover, equation (43) suggests that if the effective interactions between solute 

particles can be adjusted (by adjusting pH or salt concentration for example) then nanocrystals of 

any desired size can be produced. 

Divergence in cluster size 

The Lifshitz point is defined to occur at the point where the uniform fluid becomes mechanically 

unstable with respect to density fluctuations with an infinite range.  To locate the Lifshitz point, we 

use an approximation for the pair direct correlation function which is exact in the low density limit, 

i.e. 
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Using equation (44) and finding the value of Aa or which 10

2 kbb kc ),()(  generates a Lifshitz 

point at Aa = 4.12 for the SALR potential used in this work.  However, according to the model 

presented here and equation (43), the cluster diameter diverges when 
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For the SALR model of this work equation (45) predicts a divergence in the equilibrium cluster size at 

Aa = 2.51, which is much less than for the Lifshitz point predicted earlier. However, as previously 

discussed, it is likely that clusters will solidify at Aa ~ 2.19, and so we suggest cluster size will actually 

diverge for 2.19 < Aa < 2.51. 

Modulated phases 

When the packing fraction of clusters reaches some upper limit we suggest a phase transition from a 

disordered cluster fluid phase to an ordered cluster solid occurs.  If we consider clusters to behave as 

mesoscopic hard spheres with diameter eff

cd , we can expect this transition to occur at the cluster 

packing fraction 63 /)( eff

cc

eff

c d  ~ 0.496, equivalent to the hard sphere fluid packing fraction at 
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freezing.  The locus of this transition line, from disordered to ordered cluster phase, is shown in 

Figure 2.  We expect the modulated phases seen by Archer and Wilding34 occur beyond this 

transition line. 

Cluster vapour to cluster liquid transition 

Over the narrow range 1.6<Aa< 1.75, the cluster fluid phase separates via a first-order transition into 

cluster vapour and cluster liquid phases for b< 0.1.  Although the transition occurs over a narrow 

range of bulk vapour densities, the change in cluster density is proportionately much greater.  The 

bulk density range over which the cluster vapour phase is stable is very narrow, and vanishes near to 

Aa = 1.65, resulting at higher values of Aa in a bulk vapour (with pre-clusters) to cluster liquid 

transition.  We locate the phase transition densities by plotting  against P and finding the 

intersection point of the cluster vapour and cluster liquid branches.  Figure 5 shows one such plot for 

Aa = 1.75.  A first-order phase transition is clearly visible.  The cluster size is very similar in both the 

cluster vapour and liquid phases, changing from 10.66 to 10.81 at the transition at this value of Aa. 

We suggest the mechanism for this transition is an effective depletion potential caused by effective 

vapour – cluster interactions.  Consider again Figure 1c, which depicts this effective interaction for a 

typical set of SALR parameters.  Although the thermodynamic model predicts the cluster vapour – 

cluster liquid transition occurs for smaller values of Aa than this, Figure 3c does give a good 

indication of strength and range of the effective vapour-cluster interaction.  It will cause the vapour 

to be significantly depleted in the region surrounding each cluster.  When two clusters approach 

each other these depletion zones overlap, causing the vapour density between the clusters to be 

suppressed further.  So the net force of the vapour on each cluster results in a mutual cluster-cluster 

attraction along a vector joining cluster centers, characterized by a depletion potential.  This 

potential will increase in magnitude as the vapour density increases (i.e. as Aa decreases – in 

agreement with Figure 2).  Interestingly, this means that clusters experience two effective forces. 

First, they experience the direct effective cluster-cluster interaction, which is repulsive, given by 

equation 

 

(12) and illustrated in Figure 1b for the same SALR parameters. Second, there is the 

depletion potential mediated by the vapour, which is always attractive.  These effective interactions 

compete on the length scale of clusters and beyond.  So we have competing interactions over two 

different length scales.  This suggests the possibility of a hierarchy of ordering over different length 

scales, i.e. the intriguing potential for clusters of clusters, or super-cluster phases. For much smaller 

clusters the depletion effect and size-asymmetry between clusters and primary particles will be 

proportionately smaller. For these reasons we expect this transition will vanish for much smaller 

clusters, typical of  ~ 0.1. 

The origin of this cluster vapour – cluster liquid transition in the thermodynamic model is the excess 

mixture free energy, ),( cv

ex

mixf  . It has not been observed before in theoretical work because this 

term is normally ignored, i.e. set equal to zero, in micellization theories.  Neither have previous 

simulations been large enough to observe it; a very expensive simulation consisting of perhaps 

several thousand clusters (i.e. several million particles) would be required. And, as explained earlier, 

experimental work has focused on the  ~ 0.1 region of the phase diagram. 

3.2 Fluid structure 

The radial distribution function (rdf) features prominently in the energy density (see equations (8) 

and (11)).  Figure 6 shows how the rdf predicted by the model changes with bulk density along an 

isotherm at Aa = 2.0 above the CCC, within the cluster fluid phase.  The general shape of the rdf is 

similar to that predicted by self-consistent integral equation theories20,41,45,46 and Monte Carlo 
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simulations34.  The inset in Figure 6 shows the same results presented on a logarithmic scale.  At 

higher densities, on approaching the suggested location of the transition to a modulated phase, we 

begin to see longer range structure on the scale of the cluster diameter develop, which is 13.5 at this 

temperature. 

3.3 Cluster size distribution 

Fluctuations in cluster size and shape around the equilibrium are expected, but the current model 

does not explicitly account for them.  Nevertheless, it is useful to understand the expected extent of 

size and shape fluctuations in order to gauge their influence.  In principle, this cannot be achieved 

precisely within the current model.  However, the cluster size distribution can be estimated by 

minimizing the free energy density for a range of cluster sizes at fixed bulk density.  Although this 

generates the free energy density for a cluster fluid with an average cluster size not equal to the 

equilibrium size, rather than for a system with fluctuations in the cluster size around the equilibrium, 

it should nevertheless provide a reasonable estimate of cluster size fluctuations provided the cluster 

density is very small, since then cluster – cluster interactions are insignificant and we can consider a 

cluster in isolation. 

To this end we choose Aa = 2.0 and b = 0.01, which is somewhat above the CCC but with sufficiently 

low cluster effective packing fractions0.05 < eff

c < 0.074such that clusters are largely isolated.  The 

relative probability of a fluctuation in the size of a single clusteris given bythe exponential of the free 

energy density of that state multiplied by the system volume per cluster, i.e. 

)/)(exp()( cccc dfdP   (46) 

Figure 7 shows how this estimate for the relative probability varies with cluster diameter for the 

above cluster fluid phase.  We see that dc is expected to vary within the rather narrow range 13.5 ± 

0.7 to 2 standard deviations.  We consider this justifies the neglect of explicit cluster size and shape 

fluctuations within the model, which we expect will have a relatively small influence for this system.  

However, we should be aware that other types of SALR model with either different parameters or 

different forms of interaction potential might generate larger cluster size fluctuations. 

 

4. Comparison with Monte Carlo simulations 
Monte Carlo simulations were used to verify the model’s predictions, specifically the existence of a 

cluster fluid and cluster characteristics such as cluster density and size. More detailed comparison of 

theory and simulation is left for another publication, including verification, or otherwise, of the 

cluster vapour to cluster liquid transition. 

The SALR parameters used were Aa=2.0, Ar = 0.5, za = 1.0 and zr = 0.5 and therefore a bulk density of 

0.02, which we expect to correspond to the cluster fluid (see figure 2), was chosen. A total of 10648 

particles were used.  Simulating systems that have long-range interactions and structure on multiple 

scales presents several difficulties, which we now describe, together with the strategies adopted to 

overcome them.  Very long range interactions demand a large cutoff in the interactions and 

expensive pairwise energy sums.  In this case a cutoff of 15 times the hard sphere diameter was used 

together with standard cell lists58.  To enable the sampling of both vapour and cluster internal 

structure by standard Monte Carlo moves a dual displacement size was employed with step sizes of 

0.1 and 1.5 hard sphere diameters selected at random with probability 0.8 and 0.2, respectively.  In 
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order to sample the cluster fluid phase efficiency, cluster moves58 were also used.  After a calibration 

process a bond length of 2.0 hard sphere diameters was chosen to define clusters within each 

microstate.  This bond length allows the translation and rotation of clusters as a whole unit, together 

with a portion of the vapour phase that surrounds each cluster, and leads to efficient sampling.  

Much shorter or longer bond lengths were found to be less efficient.  

An initial trial simulation was started from a fully dispersed state, allowed to evolve to form clusters, 

and then reach equilibrium.  The result was the formation of a cluster phase of relatively small 

clusters, when compared to the predictions of the thermodynamic model.  For sufficiently long 

simulations we expected to observe clear steps in the configurational energy, corresponding to the 

fusion or evapouration of these small clusters.  However, it soon became apparent that this would 

be a very rare event and that in practice once a specific number of clusters is established, they 

remain stable.  Essentially, each cluster state is metastable within this sampling scheme.  This is a 

consequence of the strong repulsion between clusters at short range, which prevents fusion events, 

and the nature of the free energy dependence on cluster size, which tends to prevent cluster 

evapouration once clusters have achieved a sufficiently large size. 

Therefore, another strategy was adopted. Our aim is to simulate several metastable cluster states 

where the number of large clusters is fixed to evaluate their energy. The thermodynamic model 

indicates that the free energy minimum coincides with the energy minimum. So, accepting this 

result, we can determine the equilibrium number of large clusters for our chosen number of 

particles and system volume (which are fixed) by finding which cluster state (i.e. the simulation with 

a given number of large clusters) with the lowest energy. Our simulation strategy to achieve this aim 

consists of three steps; i) establish initial conditions for several simulations with a given number of 

large clusters, ii) perform simulations to find the locally stable behaviour for each metastable state, 

iii) compare resulting energies to find the global equilibrium state (assuming, as revealed by the 

theory, that it is dominated by energy). It is important to note that we are not interested in 

evaporation, nucleation, splitting or merging of clusters, because this would change the number of 

clusters, which we want to remain fixed in each simulation. We wish only to sample microstates of 

metastable cluster states so that we can evaluate their respective energies . We proceeded as 

follows. 

Starting from the initial simulation described earlier with a large number of clusters, new cluster 

states, with fewer, larger clusters, were generated by choosing the smallest clusters and dispersing 

them.  To achieve this we generated a table of the cluster size distribution. The largest X clusters 

were allowed to remain (where X is the target number of large clusters for that simulation), but the 

remaining clusters larger than 50 particles in size were dispersed.  Dispersion of these clusters 

occurred simply by assigning random positions to their particles. Note that the cluster size 

distribution for all simulations has a broad ‘zero’ in the region of 50 particles, which justifies our 

choice of this cluster size to distinguish between large stable clusters and small volatile clusters.  The 

small volatile clusters, which generally consist of just a few particles, are able to nucleate and 

evapourate readily in each simulation, and so there is no need to disperse them. Once the desired 

number of large clusters is achieved each simulation is stable and no further re-distribution of 

clusters is required. Having achieved suitable initial conditions for each simulation, ensemble 

averages are calculated after further equilibration. The straightforward cluster moves and dual-step-

size sampling we use are sufficient for this purpose. Within these metastable cluster simulations  

clusters are relatively mobile, remain apart from each other and interchange particles through the 

background vapour (a movie59 of the simulation with 13 large clusters is available as supplementary 
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material at [URL will be inserted by AIP] and shows how the clusters are mobile, i.e. the movie shows 

that this is a cluster fluid phase and not a cluster glass). 

Figure 8a shows the variation of the equilibrium (configurational) energy with the number of large 

clusters.  A minimum is observed in the region between 10 - 15 clusters.  Figure 8b shows a snapshot 

of an equilibrium configuration from the simulation with 13 clusters.  Therefore, MC simulations 

indicate that the most favorable cluster density is between 1.9x10-5 and 2.8x10-5 with clusters of 

1065 to 710 particles respectively.  This is in reasonable agreement with the thermodynamic model 

that predicts a cluster density of 1.5x10-5, with an average size of 1112 particles. 

 

5. Summary 
The thermodynamic model developed here for the cluster fluid phase of the SALR fluid is essentially 

a kind of micelle theory.  However, it has some novel features that, to our knowledge, are unique in 

theories of micellization, and these lead to unique predictions.  First, it is designed to operate on a 

pair potential (r) (i.e. it can predict how changes in phase behaviour depend on details of the pair 

potential). This approach is unusual, in that micelle theories are usually framed in terms of emergent 

properties, such as the binding energy per particle and interfacial tension which are often adjusted 

to reproduce experimental data.  Second, the model is parameterized by four densities, and in this 

regard it can also be considered a kind of non-mean-field density functional theory.  By including the 

liquid, or body, density in this set we are able, for the first time, to investigate how the cluster 

density is traded against the other parameters at equilibrium.  In particular, this enables 

identification of a threshold beyond which clusters are likely to be solid particles, rather than liquid-

like droplets.  This, in turn, leads to our proposal for a non-classical two-step crystal nucleation 

process, similar to those proposed by others in earlier work based on a division of timescales 

between cluster formation and nucleation within clusters.  The novel contribution of this work to the 

two-step proposal concerns the insight generated by the approximate cluster size formula, equation 

(43), which indicates that cluster size will change upon crystallization of the droplets.  It will be 

interesting to investigate this proposal in future work, and in particular to discover if macroscopic 

crystals can grow out of microscopic droplets. Thirdly, the model is unique among theories of 

micellization for the SALR fluid in that 0),( cv

ex

mixf  .  This enables prediction of a novel cluster 

vapour to cluster liquid transition which we aim to investigate further by simulation of suitable 

equilibrium SALR systems in future work. 

The phase behaviour predicted here might also be investigated by experimental means if suitable 

equilibrium SALR systems can be devised.  The colloid-polymer systems used recently by Bartlett and 

co-workers32,33 for which  ~ 1 are interesting in this respect.  It is not clear if these predictions can 

be confirmed by other kinds of experimental systems. Systems that might exhibit effective 

interactions similar to the SALR model will be those with relatively strong short ranged interactions, 

perhaps caused by hydrogen bonding, and weaker long ranged interactions, perhaps caused by 

charge dissociation in solution (i.e. by de-protonation or dissolution of other ionic groups).  The list 

of systems that display these kinds of phenomena (e.g. hydrogen bonding and de-protonation in 

solution) is very long and encompasses solutions of amines, amino acids, peptides, and many other 

molecules of biological relevance. For example, clusters have recently been observed experimentally 

in aqueous glycine solutions30.  However, there is considerable debate about the existence and cause 

of clusters like these in molecular liquid mixtures. It is frequently argued that they could be caused 
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by impurities, and due to the length-scales involved it is difficult to refute this. Nevertheless, 

clustering in these molecular liquids could be in the equilibrium regime due to the length and 

energy-scales involved, and it would be interesting if this could be confirmed. 

The thermodynamic model developed here is most appropriate for large clusters where the 

influence of interfacial entropy and roughness, which the model neglects, are less significant.  We 

have applied it to one particular combination of SALR parameters where large clusters are expected.  

We expect the behaviour obtained for this particular set is quite general, but nevertheless it will be 

interesting to map equilibrium cluster fluid behaviour for a much wider range of parameters. In 

particular, it will be interesting to apply the model to smaller values of  where non-equilibrium 

effects are more likely in simulations and experiment. In cases where such frustrated phases occur 

the model might reveal the underlying equilibrium phase towards which these phases are slowly 

evolving, which could be one of the cluster phases described here. 

We are now in a position to comment on previous work by Bomont et al.45 based on self-consistent 

integral equation methods.  They find evidence of long-ranged correlations that grow quickly with 

small changes of system parameters, suggestive of clustering, and observe a jump in structural 

properties over a narrow range of system parameters.  Their results are obtained for a two-Yukawa 

fluid similar to ours, but with slightly different parameters (Ar/Aa = 0.1, za = 1.5, and zr = 0.5; with 

0.86 <Aa< 0.91) and at much higher densities than we investigate here, b = 0.382.  At these high 

densities, our work indicates that the cluster fluid will not be seen, since instead modulated phases 

are expected.  However, Figure 2 does indicate the possibility of a first order transition from the bulk 

vapour (with pre-clusters) to a modulated phase at sufficiently high densities and low values of Aa.  

We suggest the jump they observe in structural properties might correspond to this transition.  
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Figures 

 

Figure 1a. The SALR potential investigated in this work, with Aa = 2.0, Ar = 0.5, za = 1.0, and zr = 0.5. 

The inset shows the long range repulsive contribution on a larger scale. 

 

Figure 1b. Effective cluster-cluster interaction (full line) for the same system as Figure 1a, with bulk 

density b = 0.01, corresponding to equilibrium cluster diameter dc = 13.49d. The corresponding 

Mayer-f function (dotted line) is shown on the right-hand axis, along with the effective cluster-

cluster hard sphere diameter ( eff

cd  = 26.30d) determined via the Barker-Henderson route (equation 

(17)) shown as the dashed vertical line. 
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Figure 1c. Effective particle-cluster interaction (full line) for the same system as in Figure 1b.The 

corresponding Mayer-f function (dotted line) is shown on the right-hand axis. 
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Figure 2. Low density phase diagram of the cluster fluid for the SALR parameters Ar = 0.5, za = 1.0, zr 

= 0.5, and a range of values for Aa. The full black line is the critical cluster concentration (CCC) that 

denotes the boundary of the cluster fluid phase. The cluster fluid phase occurs at densities higher 

then CCC, while for densities less than the CCC the bulk vapour exhibits pre-clusters. The long-

dashed black line is the metastable vapour branch of the bulk vapour-liquid transition. The blue line 

signifies our estimate for a phase transition from the cluster fluid to an ordered, or modulated, 

phase, possibly a cluster ‘solid’. The red lines signify a first-order cluster vapour to cluster liquid 

transition. At around Aa = 1.65 the cluster vapour becomes unstable with respect to the bulk vapour 

containing pre-clusters, producing a bulk vapour (with pre-clusters) to cluster liquid transition. We 

expect the cluster fluid – cluster liquid transition terminates at a critical point close to Aa = 1.75.The 

dashed-dot-dot line at Aa = 2.19 indicates that solid particle clusters are expected above this value. 
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Figure 3a. Difference, f, in the free energy density of the cluster fluid phase and the uniform bulk 

phase at the same bulk density for the SALR parameters Aa = 2.0, Ar = 0.5, za = 1.0, and zr = 0.5 and 

for a range of cluster densities and three bulk densities; b = 0.00315 (very slightly below the CCC, 

full line), b  = 0.0032 (slightly above the CCC, short-dashed line), and b  = 0.0033 (somewhat above 

the CCC, long-dashed line). 

 

 

Figure 3b.Variation of cluster density with bulk density for the same SALR parameters as in Figure 3a. 

The trend is nearly linear above the CCC (0.003155), while the inset shows it is nearly exponential 

below the CCC. 
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Figure 3c.Variation of cluster diameter with bulk density for the same SALR parameters as in Figure 

3a. A ‘knee’ is clearly observed in the vicinity of the CCC. 
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Figure 3d. Pressure, P, is plotted for a range of chemical potentials, , for the same system as Figure 

3a. At low chemical potential the uniform vapour phase without clusters (solid line) is 

indistinguishable from the pre-cluster/cluster fluid branch on the scale of this plot. At  = -5.78, 

corresponding to b = 0.006 and prior to the bulk vapour-liquid transition at b = 0.0089, the cluster 

fluid phase branch (dashed line) clearly separates from the uniform vapour branch, which is always 

metastable. The cluster fluid phase pressure increases slowly with bulk density, and we expect a 

transition to a modulated cluster ‘solid’ phase occurs close to  = -5.763, corresponding to b = 

0.061. 

Figure 4a.Variation of cluster diameter with Aa and bulk density for the same system as Figure 2. 
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Figure 4b. Variation of i) the difference in the configurational entropy density from its minimum 

value (s, full line), ii) the difference in the configurational energy density from its minimum 

value(u, short-dashed line), and iii) the vapour density (g, long-dashed line), with cluster size for 

the same SALR system as Figure 3awith b = 0.02. The energy minimum coincides with an entropy 

minimum and a minimum in the vapour density. 

 

Figure 4c. Comparison of cluster size along the CCC predicted via the full model (minimisation of 

equation (29), dashed line) and via equation (43) with l = 086 (solid line). The SALR parameters are 

the same as for Figure 2. 
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Figure 5.Variation of pressure with chemical potential for the SALR parameters Aa = 1.75, Ar = 0.5, za 

= 1.0, and zr = 0.5showing the intersection of the cluster fluid phase signifying a first-order cluster 

vapour to cluster liquid transition at  = -3.62182 and P = 0.02759. 

 

Figure 6.Radial distribution function generated by equations (8) and (11)for the SALR parameters Aa 

= 2.0, Ar= 0.5, za = 2.0, and zr = 1.0 for a series (starting at the top)of bulk densities above the CCC, b 

= 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, and 0.05. The inset is on a logarithmic 

scale. 
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Figure 7.Estimate, using equation (46) and the procedure outlined in the text, of the relative 

probability distribution for cluster size fluctuations for the same SALR system as Figure 6 at b  = 

0.01. 
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Figure 8a: Average configurational energy per particle at equilibrium for Monte Carlo simulations 

with different numbers of large clusters. System details: number of particles = 10648, system volume 

= 532400 (ρb=0.02), SALR parameters: Aa = 2.0, Ar= 0.5, za = 1.0, and zr = 0.5. Standard errors are 

provided at the level of two standard deviations. 
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Figure 8b. Snapshot of an equilibrium configuration from a system with 13 clusters, where the SALR 

parameters are the same as those used in Figure 8a. Colouring is used to differentiate clusters and 

the background vapour. 
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