Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Self-learning load characteristic models for smart appliances

Stephen, Bruce and Galloway, Stuart and Burt, Graeme (2014) Self-learning load characteristic models for smart appliances. IEEE Transactions on Smart Grid, 5 (5). ISSN 1949-3053

PDF (Stephen-etalToSG2014-self-learning-load-characteristic-models)
tsg_smart_appliance_models_final.pdf - Accepted Author Manuscript

Download (420kB) | Preview


It is generally accepted that if dynamic electricity pricing tariffs were to be introduced, their effectiveness in controlling domestic loads will be curtailed if consumers were relied on to respond in their own interests. The complexities of relating behavior to load to price are so burdensome that at least some degree of automation would be required to take advantage of pricing signals. However, a major issue with home automation is fitting in with the lifestyles of individual consumers. Truly smart appliances that can learn the details of their routine operation may be several years away from widespread adoption making integrated home energy management systems unfeasible. Similarly, usage patterns of these same appliances may be substantially different from household to household. The contribution of this paper is the proposal and demonstration of a set of probabilistic models that act in a framework to reduce appliance usage data into contextual knowledge that accounts for variability in patterns in usage. Using sub-metered load data from various domestic wet appliances, the proposed technique is demonstrated learning the appliance operating likelihood surfaces from no prior knowledge.