Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

On the investigation of a phase-transfer catalysis reaction in an oscillatory baffled reactor

Wilson, B. and Ni, X. and Sherrington, D.C. (2001) On the investigation of a phase-transfer catalysis reaction in an oscillatory baffled reactor. Industrial and Engineering Chemistry Research, 40 (23). pp. 5300-5304. ISSN 0888-5885

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A liquid-liquid phase-transfer catalysis (PTC) system investigated in this work consists of two immiscible liquid phases, n-butyl bromide (BuBr, with toluene as an organic solvent) and sodium phenolate (NaOPh, dissolved in water), each containing a reagent. To initiate the reaction between reagents a phase-transfer mechanism is required, which is accomplished through the use of a phase-transfer catalyst (PT-Cat). The PT-Cat transfers one reagent from one phase to the other, whereupon the other reagent can react with the catalyst-reagent transient. In our work two types of PT-Cat, i.e., benzyltributylammonium chloride (BTAC) and tetrabutylammonium bromide (TBAB), were used. The PTC reaction is performed in both an oscillatory baffled reactor (OBR) and a stirred tank reactor (STR). In this paper we report our experimental results of reaction rates in the two reactors for a range of operating conditions. Our preliminary results indicate that the OBR has the capability of enhancing reaction rates above those observed in the STR.