Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

On the investigation of a phase-transfer catalysis reaction in an oscillatory baffled reactor

Wilson, B. and Ni, X. and Sherrington, D.C. (2001) On the investigation of a phase-transfer catalysis reaction in an oscillatory baffled reactor. Industrial and Engineering Chemistry Research, 40 (23). pp. 5300-5304. ISSN 0888-5885

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A liquid-liquid phase-transfer catalysis (PTC) system investigated in this work consists of two immiscible liquid phases, n-butyl bromide (BuBr, with toluene as an organic solvent) and sodium phenolate (NaOPh, dissolved in water), each containing a reagent. To initiate the reaction between reagents a phase-transfer mechanism is required, which is accomplished through the use of a phase-transfer catalyst (PT-Cat). The PT-Cat transfers one reagent from one phase to the other, whereupon the other reagent can react with the catalyst-reagent transient. In our work two types of PT-Cat, i.e., benzyltributylammonium chloride (BTAC) and tetrabutylammonium bromide (TBAB), were used. The PTC reaction is performed in both an oscillatory baffled reactor (OBR) and a stirred tank reactor (STR). In this paper we report our experimental results of reaction rates in the two reactors for a range of operating conditions. Our preliminary results indicate that the OBR has the capability of enhancing reaction rates above those observed in the STR.