Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Nanosecond colloidal quantum dot lasers for sensing

Guilhabert, B. and Foucher, C. and Haughey, A-M and Mutlugun, E. and Gao, Y. and Herrnsdorf, J. and Sun, H.D. and Demir, H.V. and Dawson, M.D. and Laurand, N. (2014) Nanosecond colloidal quantum dot lasers for sensing. Optics Express, 22 (6). pp. 7308-7319. ISSN 1094-4087

[img]
Preview
PDF (Guilhabert-etal-OE2014-nanosecond-colloidal-quantum-dot-lasers)
Guilhabert_etal_OE2014_nanosecond_colloidal_quantum_dot_lasers.pdf - Accepted Author Manuscript

Download (3MB) | Preview

Abstract

Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors’ knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting lasers is as low as 0.5 mJ/cm2 for a 610 nm emission and the typical linewidth is below 0.3 nm. The emission wavelength of the lasers can be set at the design stage and laser operation between 605 nm and 616 nm, while using the exact same CQD gain material, is shown. In addition, the potential of such CQD lasers for refractive index sensing in solution is demonstrated by immersion in water.