Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Flow enhancement in nanotubes of different materials and lengths

Ritos, Konstantinos and Mattia, Davide and Calabrò, Francesco and Reese, Jason M. (2014) Flow enhancement in nanotubes of different materials and lengths. Journal of Chemical Physics, 140 (1). ISSN 0021-9606

[img]
Preview
PDF (RitosetalJCP2014-flow-enhancement-in-nanotubes)
RitosetalJCP2014_flow_enhancement_in_nanotubes.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

The high water flow rates observed in carbon nanotubes (CNTs) have previously been attributed to the unfavorable energetic interaction between the liquid and the graphitic walls of the CNTs. This paper reports molecular dynamics simulations of water flow in carbon, boron nitride, and silicon carbide nanotubes that show the effect of the solid-liquid interactions on the fluid flow. Alongside an analytical model, these results show that the flow enhancement depends on the tube's geometric characteristics and the solid-liquid interactions.