Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells

Jeorrett, Abigail H and Neale, Steven L and Massoubre, David and Gu, Erdan and Henderson, Robert K and Millington, Owain and Mathieson, Keith and Dawson, Martin D (2014) Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells. Optics Express, 22 (2). pp. 1372-1380. ISSN 1094-4087

[img]
Preview
PDF (oe-22-2-1372)
oe_22_2_1372.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

A compact optoelectronic tweezers system for combined cell manipulation and analysis is presented. CMOS-controlled gallium nitride micro-LED arrays are used to provide simultaneous spatio-temporal control of dielectrophoresis traps within an optoelectronic tweezers device and fluorescence imaging of contrasting dye labelled cells. This capability provides direct identification, selection and controlled interaction of single T-lymphocytes and dendritic cells. The trap strength and profile for two emission wavelengths of micro-LED array have been measured and a maximum trapping force of 13.1 and 7.6 pN was achieved for projected micro-LED devices emitting at λmax 520 and 450 nm, respectively. A potential application in biological research is demonstrated through the controlled interaction of live immune cells where there is potential for this method of OET to be implemented as a compact device.