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Abstract 

 

Objectives: To investigate the validity of cepstral analyses against other conventional 

acoustic measures of voice quality in determining the perceptual impression in different motor 

speech disorders - hypokinetic and ataxic dysarthria, and speech tasks - prolonged vowels 

and connected speech. 

Methods: Prolonged vowel productions as well as connected speech samples (reading 

passages and monologues) from 43 participants with Parkinson’s disease and 10 speakers 

with ataxia were analysed perceptually by a trained listener using GRBAS. In addition, 

acoustic measures of cepstral peak prominence (CPP), smoothed CPP (CPPs), harmonics-

to-noise ratio (HNR), shimmer %, shimmer dB, amplitude perturbation quotient (APQ), relative 

average perturbation (RAP), jitter, and pitch perturbation quotient (PPQ) were performed. 

Statistical analysis involved correlations between perceptual and acoustic measures, as well 

as determination of differences across speaker groups and elicitation tasks. 

Results: CPP and CPPs results showed greater levels of correlation with overall dysphonia, 

breathiness, and asthenia ratings than the other acoustic measures, except in the case of 

roughness.  Sustained vowel production produced a higher number of significant correlations 

across all parameters other than connected speech, but task choice did not affect CPP and 

CPPs results. There were no significant differences in any parameters across the two speaker 

groups. 

Conclusions: The results of this study are consistent with the results of other studies 

investigating the same measures in speakers with non-motor related voice pathologies. In 

addition, there was an indication that they performed better in relation to asthenia, which might 

be particularly relevant for the current speaker group. The results support the clinical and 

research use of CPP and CPPs as a quantitative measure of voice quality in populations with 

motor speech disorder. 
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Introduction 

A reliable and valid assessment of voice quality is essential for the management of voice 

disordered patients, both contributing to differential diagnosis and functioning as an outcome 

measure.1-3 Perceptual analysis is considered a central component in this assessment, as 

Orlikoff et al4 describe that for many patients, the most important factor of their voice disorder 

is how their voice is perceived by others. There are a number of methods to quantify perceptual 

analysis, and most make use of a rating scale. The two main approaches are either to describe 

the voice quality in global terms (e.g. ‘severely disordered’, ‘normal voice’) or to define 

characteristics of the voice such as the degree of breathiness or roughness.5  

Two auditory-perceptual evaluation tools used worldwide by clinicians are GRBAS and CAPE-

V. GRBAS evolved from the work of researchers in the Japanese Association of Logopaedics 

and Phoniatrics and was described by Hirano in 1981.6 Four parameters, G – grade (overall 

dysphonia severity); R – roughness; B – breathiness; A – asthenia (weakness); and S – strain, 

are rated on a four-point interval scale. A score of 0 represents an absence of impairment. A 

score of 1, 2 or 3 represents mild, moderate or severe severity of the parameter, respectively. 

The work of Kreiman et al1 and Gerratt et al,7 in which the authors argue that ordinal interval 

scales may have limited reliability and that visual analog scales may address limitations of 

ordinal interval scales, led to a new scaling tool produced by clinicians and voice scientists at 

the Consensus Conference for Perceptual 

Measure of Voice Quality in 2002 called Consensus Auditory Perceptual Evaluation—Voice 

(CAPE-V).8 The CAPE-V uses six parameters, Overall Severity, Roughness, Breathiness, 

Strain, Pitch and Loudness, each rated by a mark placed on a 100mm visual analog scale 

with predetermined vocal tasks. The far left side represents the least impaired status and the 

far right represents the most impaired status. Scores are derived from measuring the distance 

from the leftmost side of the line to the mark in mm. 

Given the increased resolution of the measurements obtainable from CAPE-V, this tool is more 

sensitive to the parameters measured compared with the four-point scale of GRBAS.9 

Additionally, CAPE-V measures two additional parameters – pitch and loudness – and omits 
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asthenia from the evaluation. Despite these differences, studies have shown that there is a 

high degree of consensus between the two scales, both when used jointly10 or independently11 

on the same vocal samples. Either thus appears to be an appropriate tool to apply in research 

and clinical practice.  

Although the above perceptual scales have proven to be valid reflections of a speaker’s voice 

quality, their usefulness is limited by poor reliability.1 Eadie and Baylor12 have shown that 

reliability of ratings can be affected by listeners’ internal standards, i.e. their exposure to 

different types of voices, as well as their level of training, and fatigue. In addition, the type of 

speech task (continuous speech versus sustained vowel) and the type of scale used have 

been shown to affect perceptual judgement.12-15 Although Awan and Lawson16 were able to 

show that training combined with the use of auditory and textual ‘anchors’ was able to 

significantly increase agreement of raters, perceptual analysis is likely to always suffer from 

at least some degree of reliability issues. 

This problem, combined with the increasing focus on evidence-based practice in SLT 

treatment has led to the development of more objective, quantifiable measures of voice quality. 

Such alternatives include e.g. aerodynamic, acoustic, or vibratory measures such as 

electroglottographic wavegrams17. Amongst these methods, acoustic analysis has become a 

popular technique for complementing the perceptual analysis of voice quality, considering the 

relatively low cost of digital recording hardware, ease of use and non-invasive nature of the 

procedure.18, 19 

Buder20 identifies more than 100 different acoustic analysis algorithms that have been 

developed during the 20th century, many of which can now be implemented in a clinical setting. 

However, the validity of many acoustic analysis measures in use by clinicians has been 

debated since their proliferation in the nineties.5, 19, 21 For example, shimmer, jitter, and 

harmonics-to-noise ratio (HNR) are frequently used measures of perturbation and noise, 

however, many studies show that these parameters do not correlate well with corresponding 

perceptual measures of dysphonic voices.22-27 This has been partly attributed to the fact that 

a single acoustic marker may not be easily associable with perceptions of dysphonia. For this 
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reason, some researchers have considered a multiparameter approach for the measurement 

of voice quality.28-33 However, what is not entirely clear to date is which parameters of 

combination thereof are best suited to reflect voice quality. 

Maryn, Roy, De Bodt et al34 conducted a meta-analysis of studies evaluating correlations 

between acoustic measures and overall voice quality. 25 studies were included in total, with 

87 acoustic measures having been performed. The authors concluded that of these 87 

acoustic measures four were acceptable as markers of overall voice quality in sustained 

vowels: Pearson r at autocorrelation peak; pitch amplitude; spectral flatness of residue signal; 

and smoothed cepstral peak prominence. Three measures were acceptable for continuous 

speech: signal-to-noise ratio as described by Qi et al;35 cepstral peak prominence; and 

smoothed cepstral peak prominence. The authors also noted that the level of aperiodicity (as 

represented by CPP and CPPs) in the voice signal appeared to determine overall dysphonia 

severity.  

The reason for the superior performance of CPP/CPPs against HNR, shimmer and jitter may 

be that the latter are dependent on a time-based, cycle-to-cycle analysis separating the 

speech signal into discrete pitch periods. The nature of voice disorders means that the speech 

signals are generally not periodic and extraction of the fundamental frequency (F0) is poor. In 

contrast, measures of CPP are not based on F0 extraction and are based on averaging the 

voice signal over its entire length, rather than cycle-to-cycle measurements, thus reducing the 

error in these measurements.  

A large number of studies have now established the reliability of CPP measures in predicting 

overall dysphonia and breathiness for a variety of voice pathologies such as muscle tension 

dysphonia or nodules.12, 29, 34, 36-44 Despite these encouraging results, no investigations have 

been performed on speakers with motor speech disorders to date, despite the prevalence of 

voice quality changes in this population.45-47 In a prevalence study, Cooper48 found that 4.8% 

of patients in his practice had dysphonia with a neurological basis. Furthermore, Logemann et 

al49 found that 89% of 200 individuals with PD had voice disorders; more than those with 

articulation difficulties in this case.  
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Acoustic analysis of voice quality in PD in particular has received significant attention from 

researchers. The most commonly reported acoustic markers of dysphonia in PD are reduced 

maximum phonation time (MPT); alterations in HNR, shimmer and jitter; and reduced F0 

variability.50-52 As in voice disorders, these findings are not universal. Yücetürk et al53 report 

that their 30 PD patients had significantly different MPT and HNR from their 20 controls. 

However, they found no significant difference for jitter or shimmer. Furthermore, Santos et al54 

observed no difference in any of their acoustic measures used, including F0, shimmer, jitter 

and HNR; although their sample size was small (5 PD and 5 control participants). Where 

reported, all of these studies agree that perceptual voice quality in PD is characterised by 

roughness, breathiness and reduced loudness. 

Fewer studies are available on the analysis of voice quality in ataxic dysarthria. Perceptually, 

Gilman and Kluin55 as well as Hertrich et al56 report harshness and breathiness in their 

description of ataxic voice quality. A study of the acoustic analysis of ataxic dysarthria by Kent 

et al57 found excessive variation of F0 was the most frequent marker, with high shimmer in both 

gender groups and high jitter in women only.  

In summary, there is significant evidence that voice quality abnormalities are of concern in the 

MSD population. In addition, the literature reporting acoustic analyses of these disorders has 

grown to the point that an acoustic typology of them can be constructed.58 Yet, despite the 

reported benefits of CPP analyses over more traditionally employed acoustic parameters for 

specific voice pathologies, there is currently no information on the suitability of the cepstral 

measures in the motor speech population. 

This study aims to fill this gap and investigate the validity of cepstral analyses in reflecting the 

perceptual impression of overall dysphonia, roughness, breathiness, and asthenia in speakers 

with motor speech disorders. As part of this investigation, the study examined (1) how cepstral 

analyses compare to other conventionally used acoustic measures of voice quality in how well 

they correlate with perceptual measures in this population; (2) how well any of the acoustic 

measures were able to discriminate between the different types of motor speech disorders; 
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and (3) whether there was a difference in measurement reliability and validity for speech and 

non-speech tasks across the measures.  

 

Method 

 Participants 

Voice samples of 43 speakers with PD and 10 participants with ataxia were used in this study.  

The PD group consisted of 31 males and 12 females. Ages ranged from 46 to 85 years, with 

a mean ± SD of 68.02 ± 8.58 years. PD severity was rated with the Hoehn and Yahr scale.59 

Stages ranged from 1 to 5, with a median stage of 2.5. The ataxia group consisted of 5 males 

and 5 females. Ages ranged from 28 to 72 years, with a mean ± SD of 51.5 ± 13.6 years. 

Severity of dysarthria in both groups ranged from mild (no articulatory impairment but mild 

changes to voice quality and volume) to moderate/severe (significant articulatory impairment 

leading to largely unintelligibile speech, combined with changes to voice quality of various 

degrees). 

 

 Procedure 

The data had been recorded as part of other investigations by the second author.60, 61 Three 

recordings were used for each participant consisting of: 1. sustained phonation of /a/ for as 

long as comfortable; 2. a reading passage (the Cherry tree passage62 for the PD speakers, 

and the Cinderella Passage63 for the ataxia participants); and 3. a spontaneous speech 

sample, consisting of a monologue about a favourite holiday (PD) or story recall of the reading 

passage (ataxia).  

Data had been recorded in the participants’ homes or at the university with a DAT recorder 

(Tascam DA-P1) and a condenser microphone, and digitised using CSL (Kay Elemetrics, 

Model 4300B) at a sampling rate of 20 kHz. 

These recordings were edited in preparation for analysis as follows. The sustained vowel 

samples were trimmed to include only a 3 second portion starting from one second into the 

sample. All editing was done automatically using Sony Sound Forge Pro software (version 
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10.0). Manual checking of the continuous speech samples excluded any pauses lasting longer 

than 2 seconds and any unusable parts (e.g. speech from the interviewer, coughing, intrusive 

external noise). The samples were then automatically trimmed to include a 20 second portion 

from the middle. Finally, a second version of the connected speech samples was created 

where the voiced segments were removed using a modified Praat script by Paul Corthals.64 

This resulted in five recordings for each participant: one sustained vowel; one original reading 

passage; one reading passage with only voiced segments; one original sample of 

spontaneous speech; and one sample of spontaneous speech with only voiced segments. 

 

 Dysphonia ratings 

Studies have shown that the two widely used auditory perceptual evaluation tools, GRBAS 

and CAPE-V, have high reliability with each other, and either can be used in auditory-

perceptual evaluation.10, 11 The omission of asthenia or weakness in CAPE-V and the 

pertinence of measuring this parameter in MSD, particularly the PD population,65 meant that 

GRBAS was selected for use in this study.  

GRBAS scores were determined by the first author, who had received voice analysis training 

during the SLT qualifying course and additional input as part of the research internship. The 

original versions of the connected speech samples were randomised and analysed in one 

single sitting. In order to determine intra-rater reliability, 50% of the samples were rated a 

second time one week later. A further 10% of the samples were rated by an experienced 

speech and language therapy researcher with GRBAS training and several years of 

experience judging voice quality to determine inter-rater reliability. 

Intra/interrater reliability was explored using the Spearman rank-order correlation coefficient 

(rs). Reliability was high for almost all parameters across intra- and inter-rater comparisons. 

For intra-rater reliability, the analysis yielded: grade (rs = 0.863, p < 0.001), roughness (rs = 

0.818, p < 0.001), breathiness (rs = 0.811, p < 0.001), and asthenia (rs = 0.749, p < 0.001). For 

inter-rater reliability values were: grade (rs = 0.895, p < 0.001), roughness (rs = 0.682, p = 

0.005), breathiness (rs = 0.690, p = 0.004), and asthenia (rs = 0.779, p = 0.001). 
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On the other hand, both inter- and intra-rater reliability was poor for strain (rs = 0.351, p = 

0.081; rs = 0.271, p < 0.261). The poor reliability for this parameter is a reflection of a 

methodological issue related to GRBAS scoring, i.e. there is a visual perceptual element in 

the rating of strain, which renders investigations that are purely based on audio materials 

difficult. On this basis, only G, R, B, and A were used in this investigation. 

 

 Acoustic Analysis 

In order to identify the best match between perceptual and acoustic measures, a wide variety 

of acoustic methods were initially investigated, including percent jitter, relative average 

perturbation (RAP), pitch perturbation quotient (PPQ), percent shimmer, shimmer in dB, 

amplitude perturbation quotient (APQ), and harmonics-to-noise-ratio (HNR). All measures 

were performed twice on two commonly used analysis systems, Multi-Dimensional Voice 

Program™ (MDVP) and Praat, with the exception of HNR, which was only available from 

Praat. In addition, cepstral peak prominence (CPP) and smoothed CPP (CPPs) were 

measured for all samples. A detailed description of the CPP and CPPs algorithm is provided 

in Hillenbrand et al33 and Hillenbrand and Houde.66 Current data were extracted using 

Hillenbrand’s script (available online at: http://homepages.wmich.edu/~hillenbr/cpps.exe).  

In total, 15 measures were thus gathered for each sample, resulting in around 3600 data 

points. 

 

 Statistical Analysis 

Statistical analyses were completed using SPSS (version 19.0). The correlation between 

perceptual ratings of G, R, B, and A, and the 15 acoustic measures was determined using the 

Spearman rank-order correlation coefficient (rs). The Mann-Whitney U test was used to 

compare differences between the participants with PD and ataxia and the Wilcoxon singed-

rank test was used to compare the measurement values across the two analysis systems. An 

alpha level of 0.05 was used to determine statistical significance. 
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Results 

 Data Reduction 

In order to reduce the 3600 data points, these were compared with each other to establish 

which measures from which analysis system corresponded best to the perceptual evaluation. 

The Wilcoxon signed-rank test and Spearman rank order correlation were used to compare 

the data. The results suggested that MDVP data correlated more often with perceptual results 

than Praat findings. Only the HNR measure was therefore retained from Praat. There was no 

significant difference between reading and spontaneous speech data, which made one of 

these data sets redundant. Only the reading data were therefore included as these were more 

comparable across participants. Significant differences were found between measures of the 

original connected speech samples and the samples including only voiced segments. Results 

from the latter correlated better with overall dysphonia ratings (G). This is in line with the 

convention to use voiced only segments when analysing connected speech (thus emulating 

sustained vowel production), and only the filtered connected speech data were therefore used 

for subsequent analysis.  

As a result of this data reduction exercise, the following report of results will only concentrate 

on the measures taken from the sustained vowel and voiced segment only reading passage 

data, and restrict itself to CPP, CPPs (from Hillenbrand’s script), jitter (%), RAP, PPQ, shimmer 

(%), shimmer (dB), APQ  (from MDVP) and HNR (from Praat). 

  

Auditory-perceptual ratings 

Figures 1 and 2 show the participants’ perceptual scores G, R, B, and A for sustained vowel 

and reading tasks. In the sustained vowel task, median values for G, R, B, and A were 1.5, 0, 

1, and 0 respectively. In the reading task, median values for G, R, B, and A were 1, 0, 0, 1 

respectively. 

--- insert figures 1 & 2 around here --- 

 

Acoustic Measures 
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Summary statistics for each of the acoustic measures are shown in Table 1, and correlations 

between perceptual ratings and the acoustic measures are presented in Table 2. In three of 

the four perceptual parameters (grade, breathiness, and asthenia) CPP and CPPs correlated 

better than the other acoustic measures. This was the case for both the sustained vowel and 

reading.  

--- Insert table 1 around here --- 

--- Insert table 2 around here --- 

 

For both sustained vowels and reading, CPP and CPPs correlated more consistently across 

the perceptual categories than all other acoustic measures, and in the case of B in the reading 

task were the only measures to show a significant relationship. The strongest correlation 

identified is for CPP / CPPs and overall dysphonia (G). Jitter (%), RAP and PPQ also showed 

a high number of significant correlations across the perceptual ratings, but their r-values are 

never as strong as for CPP/CPPs.  

Despite the positive results for G, B and A, CPP and CPPs performed poorly in relation to 

roughness (R). The other parameters showed better correlations in this case, however, with 

the exception of PPQ, this was only true in one of the speech tasks. In addition, the correlation 

was relatively weak compared to some of the other relationships. 

In relation to task differences, there was a higher number of significant correlations for the 

sustained vowel task (n = 20) than for reading (n = 15).  

 

 

 

Differences between PD and Ataxia 

A Mann-Whitney U test revealed no significant differences between participants with PD or 

ataxia in any of the acoustic or perceptual measures for both connected speech and sustained 

vowel samples (see Table 3). 

---insert table 3 around here --- 
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Discussion 

The purpose of this study was to apply cepstral measures and other more conventional 

acoustic measures of voice quality to motor speech disorders in order to investigate whether 

cepstral measures are more valid in determining the perceptual impression of overall 

dysphonia, roughness, breathiness, and asthenia patients with motor speech disorders, or 

more sensitive to differences between different types of disorder. In addition, the suitability of 

sustained vowels versus connected speech data for this analysis was examined. 

This study found that cepstral measures (i.e. CPP and CPPs) correlated most consistently 

and most strongly with overall dysphonia, breathiness and asthenia in both sustained vowel 

and reading samples. Jitter (%), RAP, and PPQ were also good predictors of overall dysphonia 

and breathiness in sustained vowels only; elsewhere their validity was poor. The other 

measures, although at times statistically significant, were poor at predicting any perceptual 

ratings. 

These findings are consistent with the results of other studies on patients with voice pathology 

unrelated to neurological conditions. Dejonckere and Wieneke42 found that CPP predicted 

hoarseness better than other perturbation and spectral measures. Eadie and Baylor12 found a 

strong correlation between CPPs and overall dysphonia on sustained vowel samples. Maryn 

et al67 included connected speech as well as sustained vowels and found that CPPs correlated 

most strongly amongst their measures with overall dysphonia (G). Heman-Ackah et al40 also 

used samples of continuous speech and sustained vowels, and expanded their list of 

perceptual parameters to roughness and breathiness as well as  overall dysphonia. Their 

study also found CPPs to be the best predictor of dysphonia and breathiness, but not for 

roughness.  

No other studies have included asthenia in their evaluation to date and no conclusions can 

thus be drawn about how representative the current results are in this respect. Given the 

strength of the correlations of CPP and CPPs with this parameter, it can be hypothesised that 

the two measures may be clinically useful predictors of asthenia. 
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The observation that none of the measures in this study were particularly well correlated with 

roughness is also consistent with previous studies. There is conflicting evidence as to which 

acoustic measure is the ideal predictor of roughness with studies showing jitter to be more 

strongly related than shimmer, and vice versa.23, 25, 68, 69 The current study found that shimmer 

measures (shimmer % and dB, and APQ) correlated with perceptions of roughness better than 

jitter measures (jitter %, RAP, and PPQ) on sustained vowels, and the opposite result in 

reading samples. 

No difference was found between the two MSDs investigated in this study, PD and ataxia. 

Given that perceptual studies describe differences in terms of voice quality in these 

populations, this may have been due to limitations of study such as the small sample size, and 

the relatively mild severity of voice problems in both groups. It is thus an area that would 

benefit from further investigation. 

Finally, although the sustained vowel task rendered a higher number of significant correlations 

across all parameters, there was no particular difference in terms of CPP measures. They 

thus appear to be equally applicable to both types of speech sample. One consideration that 

should be taken in this respect is clinical applicability though. This study, similar to Maryn et 

al,6766 used connected speech samples with the voiceless segments removed. This required 

post-recording processing, which may not be feasible in a clinical setting. However, Moers et 

al70 evaluated the use of cepstral analyses on both sustained vowels and connected speech 

with all pauses and voiceless segments remaining in patients with hoarse voices. The authors 

found that, while correlations with perceptual measures were reduced for connected speech 

compared with sustained vowels, cepstral measures outperformed other perturbation 

measures (including those used in the current study) in both sustained vowels and continuous 

speech and were applicable to both. 

Another clinical consideration is the applicability of the measurement procedure. This study 

used a standalone programme freely available on the internet, however, many clinicians will 

not have the technical skills to perform this analysis by these means. However, there are 

commercially available alternatives. Although some of the earlier systems such as the 
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Computerized Speech Laboratory (CSL; KayPENTAX, Prine Brook, New Jersey) were 

associated with problems,39 the newly released voice analysis program (Analysis of Dysphonia 

in Speech and Voice (ADSV model 5109; KayPENTAX, Montvale, NJ)) successfully 

addressed these and thus represents a more easy to use yet equally reliable clinical interface 

for CPP analysis.71 

 

Conclusion 

This study has shown that cepstral measures, namely CPP and CPPs, remain a robust and 

valid predictor of overall dysphonia and breathiness in pathological voice arising from a MSD, 

irrespective of speech task. In addition, this study suggests cepstral measures may be 

clinically useful predictors of asthenia in this patient group. This is an important finding as no 

other studies have included asthenia in their correlations with cepstral measures and it is of 

particular importance with motor speech disorders such as hypokinetic dysarthria, in which a 

weak voice is of diagnostic importance. This finding thus merits further investigation.  

Although these results are in agreement with other studies of cepstral analyses in voice 

disordered populations in general, improvements could be made in several areas of this study. 

Limitations of sample size and severity profile were already alluded to above. Ideally, groups 

should have been matched in size, and the severity of the voice problem should have been 

more wide ranging from normal through to severely disordered, which would have allowed the 

evaluation of the specificity of cepstral measures in differentiating severity of the voice 

disorder. In addition, despite the strong inter- and intrarater reliability, more raters would have 

given greater consensus of the perceptual parameters with which to correlate the acoustic 

parameters.  

Despite these limitations, our study has provided an indication that cepstral analysis appears 

to be a valid tool in the acoustic analysis of hypokinetic and ataxic dysarthria, and should be 

applied in conjunction with the other measures typically used by clinicians at present. Future 

studies are necessary to investigate this area further, with particular emphasis on establishing 

a normative database and looking further into the discriminatory diagnostic value of the 
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measures by including participants with a wider range of severity levels and different 

underlying pathologies than was the case in this exploratory study.  
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Table 1 – Descriptive Statistics for each acoustic measure for both sustained vowels 

and reading passages. 

 

 

Sustained Vowel Reading 

Mean Std 

Dev 

Max Min  Mean Std 

Dev 

Max Min 

CPP 13.1 2.88 20.98 9.45 12.37 1.66 15.29 9.52 

CPPs 5.62 2.24 9.26 1.68 4.73 1.31 6.95 2.36 

Jitter (%) 3.39 3.05 21.33 0.63 5.38 1.13 8.96 3.06 

RAP 2.00 1.79 12.75 0.37 3.00 0.64 5.06 1.77 

PPQ 2.16 1.96 13.59 0.37 3.55 0.76 6.16 2.02 

Shimmer (%) 8.28 4.55 31.56 2.88 14.42 3.07 23.29 8.59 

Shimmer (dB) 0.93 1.18 8.78 0.26 1.53 0.32 2.46 0.79 

APQ 6.65 3.25 21.27 2.25 15.86 3.41 26.10 9.27 

HNR 14.75 4.27 24.48 6.73 12.04 2.56 17.65 7.72 
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Table 2. Correlations between acoustic measures and perceptual ratings. 

 

 

Sustained Vowel Reading 

G R B A  G R B A 

CPP -0.86** NS -0.77** -0.52** -0.54** NS -0.42** -0.47** 

CPPs -0.88** NS -0.74** -0.54** -0.53** -0.35* -0.38* -0.47** 

Jitter (%) 0.72** NS 0.60** 0.38** 0.31* 0.34* NS 0.29* 

RAP 0.73** NS 0.60** 0.38** 0.31* 0.37** NS 0.29* 

PPQ 0.67** 0.35* 0.52** 0.36** 0.28* 0.31* NS NS 

Shimmer (%) 0.30* 0.35* NS NS NS NS NS NS 

Shimmer 

(dB) 

NS 0.43*

* 

NS NS NS NS NS NS 

APQ NS 0.36*

* 

NS NS NS NS NS NS 

HNR -0.40** NS -0.32* NS NS NS NS NS 

* p < 0.05  

** p < 0.01  

NS Not significant (i.e. p > 0.05) 
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Table 3. p-values for Mann-Whitney U test comparing PD and ataxia participants across 

all measures. 

Acoustic 

Measures 

Sustained 
Vowel 

Reading  Perceptual 

Measures 

Sustained 
Vowel 

Reading 

CPP 0.574 0.574  G 0.442 0.065 

CPPs 0.916 0.798  R 0.721 0.161 

Jitter (%) 0.959 0.083  B 0.279 0.645 

RAP 0.916 0.130  A 0.721 0.442 

PPQ 0.721 0.234  

Shimmer 

(%) 

0.279 0.798     

Shimmer 

(dB) 

0.208 0.753     

APQ 0.195 0.529     

HNR 0.345 0.382     

 

 

 


