Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Multi-level view synthesis (MLVS) based on depth image layer separation (DILS) algorithm for multi-camera view

Abd Manap, Nurulfajar and Soraghan, John and Petropoulakis, Lykourgos (2013) Multi-level view synthesis (MLVS) based on depth image layer separation (DILS) algorithm for multi-camera view. In: 2013 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). IEEE, pp. 71-76. ISBN 9781479902675

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A novel Multi-Level View Synthesis (MLVS) approach for 3D vision and free-viewpoint video applications, such as light field imaging, is presented. MLVS exploits the advantages of Depth Image Layer Separation (DILS), a new inter-view interpolation algorithm, by extending stereo to multiple camera configurations. The technique finds the pixel correspondences and synthesis through two levels of matching and synthesis process. The main aim of MLVS is to create a multi-camera view system through a reduced number of actual image acquisition cameras, whilst maintaining the quality of the virtual view synthesis images. The proposed technique is shown to offer improved performance and provide additional views with fewer cameras compared to conventional high volume camera configurations for free-viewpoint video acquisition. Thus, substantial cost savings can ensue in processing, calibration, bandwidth and storage requirements.