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Abstract 

The paper investigates the mechanism of instability of deepwater risers fitted with fairings and presents an 

analytical model to predict the instability onset conditions. The simplified case of a two-dimensional (2D) 

problem was considered. The governing equations were derived, and the hydrodynamic forces were 

calculated and the effect of motion in these forces was taken into consideration. The final equations were 

linearised and an eigenvalue analysis was employed to systematically examine the stability with the 

emphasis on identifying the critical current speed for a given system. This model was validated against the 

available test results and showed a good agreement. A parametric study was also carried out. It showed the 

significant role of the hydrodynamic coefficients as well as mass distribution in the stability of the system. 
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1 Introduction 

Suppression of the vortex-induced-vibration (VIV) of deepwater risers in ocean currents is an important 

issue. Various methods have been proposed to control this phenomenon. Among them, outfitting the riser 

with a VIV suppression device is one of the most prevalent techniques. These devices reduce the VIV in 

different ways and each has its own advantages and drawbacks. Helical strakes, perhaps the most 

implemented device, suffer from an increase in the drag force. Riser fairings are capable to mitigate VIV 

while simultaneously reducing drag by streamlining the fluid current round the riser and consequently 

weakening the vortices shed aft of the body. They are typically of teardrop geometry, varying in terms of the 

chord length c, thickness t, span length and tip and tail details. 

Tank tests have revealed that fairings are exposed to severe vibrations when the current velocity exceeds a 

certain limit. Some designs demonstrated typical VIV response meaning that these sections, though 
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streamlined to some extent, were still experiencing vortex shedding while some other designs underwent 

vibrations with different features from VIV. They exhibited self-induced oscillation or dynamic instability 

characterised by the increase of responses upon excitation (Ericsson and Reding, 1980; Ikeda et al., 2003; 

Lee and Allen, 2005; Meyer et al., 1995; Slocum et al., 2004).  

Dynamic instability, defined in a classical sense, is the fact that response of a system increases with time 

which is caused by negative damping in the system (Lee and Allen, 2005). Lee and Allen expound that in the 

context of VIV, dynamic stability can be described otherwise. As the flow speed increases the VIV motion of 

a cylinder rises to a certain level, and then the motion interferences with the vortex shedding process and 

begins to break up the symmetric pattern of alternate vortices. The motion magnitude does not increase even 

if the flow speed continues to rise, thus the process is self-limiting. When the cylinder is fitted with fairings, 

they can rotate and form an asymmetric section with respect to flow which entails lift force and may amplify 

the vibration beyond that of a bare riser. This type of vibration is not self-limiting anymore and the amplitude 

increases along with the velocity. The frequency of this vibration was reported to be less than the frequency 

of corresponding vortex shedding (Braaton et al., 2008). In general, as the current speed increases the first 

peak in the vibrations (Figure 1) is caused by vortex shedding (Blevins, 2001) while the second peak at a 

higher reduced velocity Ur is associated with the instability of a riser fitted with fairings.  

Some researchers tried to explain the source of the problem through early separation of boundary layer and 

stall (Calkins, 1984; Ericsson and Reding, 1980). Accordingly, it was recommended to reduce the angle of 

fairing contour in the leeside to match the fairing profile to the flow regime (Ericsson and Reding, 1980; 

Grimminger, 1945). Meyer et al argued that observed instability was due to the fact that the centre of rotation 

of the fairing was located behind the aerodynamic centre (Meyer et al., 1995). Several methods have been 

proposed to rectify the problem, e.g. trailing-edge fins or adding vortex generators (Calkins, 1984; Gardner 

and Cole, 1982; Grant and Patterson, 1977; Meyer et al., 1995). On the other hand, large hydrodynamic 

damping that some fairings generate (Lee et al., 2004) can be a key reason for their dynamically stable 

response as well as dominant suppression mechanism (Lee and Allen, 2005). 

The instability of fairing has made the design engineers carry out extensive model testing on the stability of 

each suggested fairing profile, e.g. short fairing or dual fin splitter (Spencer et al., 2007). Therefore, it is vital 
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and beneficial to predict the instability onset condition for a given system theoretically in the design phase. 

An analytical model was proposed to explain the mechanism of instability. This model was based on a 

simple two-dimensional model of airfoil flutter and did not include the effect of hydrodynamic damping 

(Slocum et al., 2004). The riser and the fairing were modelled as a single body in this model.  

The present study endeavours to develop a more comprehensive analytical model and to take the effect of 

more parameters into consideration. The classical flutter theories cannot be applied directly because they are 

based on thin-airfoil theory with essential assumptions to ignore viscosity and thickness (Bertin and Smith, 

1998). Moreover, an airplane wing is modelled as a cantilever beam with both flexural and torsional 

stiffness. On the contrary, riser fairings are designed to freely swing about the riser and therefore, no 

torsional stiffness exists to restore a distorted fairing to initial condition except the stiffness generated by 

hydrodynamic forces. Hydrodynamic forces depend on the orientation of fairing relative to flow and 

therefore in the equation of motion they will be coupled with the terms of the fairing motion. Navier-Stokes 

equations to define hydrodynamic forces require a numerical solution which masks the analytical feature of 

the model. Thus, it is necessary to make some simplifying approximations in both spatial and temporal 

domains. 

To remove the effect of three-dimensionality on hydrodynamic forces, ‘strip theory’ approximation is 

deployed. Thereby, it is assumed that hydrodynamic characteristics of a 3D fairing are equal to that of a 2D 

section and spanwise variations of force are negligible. To eliminate the effect of flow history, the equations 

of motion will be derived under the assumption of quasi-steady dynamic derivatives. The last step is to 

assess stability of the system against an infinitesimal disturbance from equilibrium position. It should be 

noted that in a large proportion of all cases, an adequate definition of flutter properties of a system can be 

obtained by studying the stability of infinitesimal motions (Bisplinghoff et al., 1996).  

The development of the analytical stability model discussed in the following is based on few assumptions 

outlined below: 

- Fairing segments are installed on a vertical top tensioned riser. 

- Individual fairing segments are rigid structures and do not experience any deformation. 

- Fairing segments are free to rotate about the riser and there is no structural torsion-stiffness. 
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- Entrapped water within the fairing shell moves with the fairing as a rigid body. 

- ‘Strip theory’ approximation is employed to reduce the three-dimensionality of hydrodynamic 

characteristics of fairing to a two-dimensional section. 

- ‘Quasi-steady’ assumption is considered and the effect of flow history is eliminated. 

- As observed in the tank tests, motion in-line with the current direction is of very limited amplitude in 

comparison with cross-flow translation, e.g. 0.6D against 4D where D is the riser diameter (Braaton 

et al., 2008). Thus, in-line motion has negligible effect on flutter-type instability. 

- According to quasi-steady assumption, lift, drag and moment are functions of instantaneous angle of 

attack (AoA). However, the effects arise from cross-flow translation as well as influences due to 

time variation of AoA (torsional velocity) are to be considered. 

These assumptions impose some limitations on the application of this model. This model will be helpful in 

determining the threshold velocity at which the instability can occur for a given system of riser and fairing. 

However, it is not capable of explaining the evolution of unstable motion and its development in subsequent 

stages. Whether the amplitude of this unstable motion continues to increase or is self-limiting is out of the 

scope of this model. 

The other major limitation of this model is that the hydrodynamic coefficients are assumed to vary only with 

angle of attack, however, they may be affected by turbulence and vortex shedding too. On the other hand, the 

quasi-steady assumption requires that the vortex shedding frequency be well above the natural frequency of 

structure. Although vortex shedding from fairings is not very likely as they are devised to suppress VIV, this 

condition should be assessed if the fairing still experiences some vortices.  

It should be mentioned that this model is based on linearization of hydrodynamic forces. Since real physical 

phenomenon are not linear, the question always arises how good the linearised theory is as an approximation 

to the real case, and to what extent of magnitude of the variables concerned the linearised theory is valid. At 

present, it can only be said that experimental observations show the linearised theory of flutter type 

instability represents fairly closely the real situation in the neighbourhood of the critical instability speed, 

provided that the amplitude of motion remains small (Fung, 2002).  
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2 Governing Equations of Motion 

A cross-section of a riser fitted with fairings is shown in Figure 2. The riser is a pipe, possibly covered by 

buoyancy module, filled with fluid and supported by a spring and damper in cross-flow (CF) direction which 

depict the contribution of the rest of the riser. As the test reports showed large amplitude vibration in CF 

direction, it is assumed that the negligible motion in line with the current is unimportant in comparison with 

CF oscillation (see Section  1). Thus, the riser has only the translational degree of freedom (DOF), y(t). The 

riser also interacts with the fairing which results in transverse and torsional forces, 𝐹yint and 𝐹θint 

respectively. Fairing is designed to experience as little torsional friction as possible to easily align itself to 

current. Therefore, it can be deduced that this friction force can affect the rotational freedom of fairing but 

induces no tangible deformation in the riser, hence, meaning there is no need to consider another DOF for 

torsion of the riser. 

The fairing is constructed robust enough not to bear any structural deformation induced by hydrodynamic 

forces (see Section  1). Fairing has two DOFs and while moving transversely with the riser y(t), it rotates 

independently θ(t). The interaction of the system with the current is through the fairing and associated 

hydrodynamic forces including lift, drag, moment and added mass. The fairing may be filled with buoyancy 

material which is rigid and behaves as a part of the fairing. Nevertheless, there are other types of fairings 

which are hollow and the sea water penetrates into them. The entrapped water within the fairing’s shell is 

assumed to follow its motion and thus is treated as a rigid body like the previous case (see Section  1). 

By constructing the free body diagram of the riser and taking y(t) as the only DOF, the governing equation of 

motion for riser CF transition is derived, 

int
r y y ym y C y k y F+ + = 

 (1) 

where mr, ky and Cy are the mass per unit length, stiffness and damping coefficient of the riser respectively. 

Two groups of forces act on the fairing, i.e. hydrodynamic forces and reaction forces at interface with the 

riser which include −𝐹yint and −𝐹θint. The latter represents the torsional friction of angular oscillation. This 

friction which absorbs energy and works as a damper is modelled here with a viscous type damping term, 
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−𝐹θint = −𝐶𝜃�̇�. The free body diagram of fairing leads to two coupled equations for transverse and torsional 

motions.  

H int
fr a x a y y(m m )y (S S ) F F+ − + θ = −



 (2) 
H

a x a(J J ) (S S )y F Cθ θ+ θ− + = − θ 



 (3) 

where mfr, Sx and J are the mass, first mass moment of area and polar mass moment of inertia for fairing 

respectively. Moreover, ma, Ja and Sa are respectively the added mass parameters of the fairing for CF 

transition, angular motion and their mutual effects on each other. The terms 𝐹yH and 𝐹θH show hydrodynamic 

forces on fairing in CF and rotational directions.  

By combining and re-arranging Eq (1) to Eq (3), the final equations of motion of the whole system are 

obtained,  

H
a y y x a y(m m )y C y k y (S S ) F+ + + − + θ = 

 (4) 
H

x a a(S S )y (J J ) C Fθ θ− + + + θ+ θ = 



 (5) 

where = 𝑚r + 𝑚fr . 

Although the direction of current is constant, the fairing oscillates in its cross-section plane and therefore 

hydrodynamic forces depend on the position of the fairing relative to the current direction, i.e. AoA. More 

significantly, sea water is a fluid and does not react in a prompt manner to any disturbance caused by the 

fairing’s motion. It means the hydrodynamic forces at a specific time may be influenced by the history of 

fluid’s motion. This adds to the complexity of the issue and makes the analysis face some difficulties. To 

tackle this issue, it was elaborated in methodology (see Section  1) as to why it is necessary to use the ‘Quasi-

Steady’ assumption and remove the flow history. By considering the ‘Quasi-steady’ assumption, the 

hydrodynamic forces become a function of instantaneous AoA, α. With reference to Figure 3, the 

instantaneous AoA may be written as, 𝛼 = 𝜃 − 𝛽, where 𝛽 = tan−1[(�̇� − 𝑅�̇�)/𝑈]. The parameter R is the 

distance of a reference point from the centre of rotation. It is used to describe the resultant of variations of 

the AoA over the fairing’s circumference which are induced by the angular velocity, �̇�. In fact, angular 

velocity generates a vertical component of velocity vector which varies over the section by the horizontal 
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distance from the pivot point. Naturally, the variation of vertical component of the fairing’s velocity induces 

a variable change in AoA at each point along the section. Thus, the definition of measurable hydrodynamic 

coefficients at which the whole section stands at a specific AoA is violated here. To adapt this variation of 

AoA to conventional definition, an approximation simulating the effect of angular velocity on the flow field 

is required. By considering that the fairing is a symmetric section, a reference point on the chord line at a 

radius R with respect to the centre of rotation (CR) is chosen. By convention, if R > 0, the reference point is 

located aft of the CR. 

All hydrodynamic forces on the fairing at an instantaneous distortion angle of θ must be calculated based on 

the relative current velocity Urel and instantaneous incidence angle α (Figure 3). For each DOF, the 

corresponding force is, 

2 2H 1 1
y rel L rel D2 2F U cC cos U cC sin

α α
= r × β− r × β

 (6) 
2H 21

rel M(cr)2F U c Cθ α
= r

 (7) 

where CD, CL and CM(cr) are drag, lift and moment coefficients respectively, measured at CR with respect to 

chord length c.  

Hoerner showed that the lift function of a thick foil with c/t = 0.68 and 0.70 is almost perfectly linear up to 

20 degrees (Hoerner, 1992). He also reported a linear relation between drag and lift coefficients of thick foils 

(Hoerner, 1965). Thus, for prediction of the instability onset the hydrodynamic coefficients at a small AoA, 

α, can be linearised by the use of Taylor series about the equilibrium position α = 0. The variable α is a 

function of velocities and needs to be expanded in Taylor series similarly. It can be easily shown that 

𝛽 ≈ [(�̇� − 𝑅�̇�)/𝑈] and 𝛼 = 𝜃 − [(�̇� − 𝑅�̇�)/𝑈]. By substituting α and the linearised hydrodynamic 

coefficients in Eq. (6) we have, 

( )2 2 L1 1
rel L D2 2

0

CU c C cos C sin U c
α α

α=

 ∂
r β− β = r θ ∂α   

L1
D2 0

0

CUc C y
α=

α=

 ∂
− r + ∂α 



 

L1
D2 0

0

CRUc C
α=

α=

 ∂
+ r + θ ∂α 



 (8) 
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Similarly, Eq. (7) becomes,  

2 M(cr)2 2 21 1
rel M(cr)2 2

0

C
U c C U c

α
α=

 ∂
r = r θ+  ∂α   

M(cr) M(cr)2 21 1
2 2

0 0

C C
Uc y RUc

α= α=

   ∂ ∂
− r + r θ      ∂α ∂α   





 (9) 

By replacing the hydrodynamic force terms in Eq. (4) and (5) with linearised terms from Eq. (8) and (9) and 

re-arranging the result, the equations of motion will be in the following form, 

( ) ( )L1
a y D y x a2 0

0

Cm m y C Uc C y k y S S
α=

α=

  ∂
+ + + r + + − + θ+   ∂α  



 

 

2L L1 1
D2 20

0 0

C CRUc C U c 0
α=

α= α=

   ∂ ∂
− r + θ− r θ =   ∂α ∂α   



 (10) 

 

( ) ( )M(cr) M(cr)2 21 1
x a a2 2

0 0

C C
S S y Uc y J J C RUcθ

α= α=

   ∂ ∂
− + + r + + θ+ − r θ+      ∂α ∂α   

 

 

 

M(cr)2 21
2

0

C
U c 0

α=

 ∂
− r θ =  ∂α   (11) 

3 Stability Analysis 

Let 𝑌� = �̇� and Θ� = �̇�. By substituting them in the equations of motion, we have, 

( ) ( )

( ) ( )


a x a

x a a

A X

y1 0 0 0
ˆ0 m m 0 S S Y

0 0 1 0

0 S S 0 J J ˆ

+ − +
=

θ

− + + Θ

  
                










((((((((((

 

2L L L1 1 1
y y D D2 2 20 0

0 0 0

M (cr ) M (cr ) M (cr )2 2 2 21 1 1
2 2 2

0 0 0

B

0 1 0 0

C C C
k C Uc C U c RUc C

0 0 0 1

C C C
0 Uc U c C RUc

α= α=
α= α= α=

θ

α= α= α=

∂ ∂ ∂
− − + r + r r +

∂α ∂α ∂α

∂ ∂ ∂
− r r − − r

∂α ∂α ∂α

 
                     
 
 
      
             
((((( 



X

y

Ŷ

ˆ
θ

Θ

 
  
 
 
  

(((((((((((( (((((((((((((((((

 (12) 

A general solution in exponential form is assumed (𝑋 = a𝑒λt), where a is a vector of constants. By 

substituting in the above equation, it results in the matrix equation �𝐴𝜆 − 𝐵� . a = 0. This linear homogenous 
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equation has non-trivial solution only if the coefficient matrix is singular which requires the matrix 

determinant to be zero. More significantly, this solution/response should be stable. The stability of the 

system dictates that the amplitude of response should decline and the vibration should abate through the 

time. This means the real part of power in assumed exponential solution should be negative.  

By setting the determinant to zero and expanding the terms, it renders a characteristic equation in λ in the 

form of a polynomial of fourth degree, i.e. 
4

i
i

i 1
c 0

=

λ =∑ . The coefficients c i are functions of three categories of 

variables, i.e. structural properties of the riser and fairing, hydrodynamic characteristics of the fairing and 

finally current velocity. Therefore, for a given system, current velocity is the only variable which governs the 

instability onset. 

Classifying the coefficients of characteristic equation and making them dimensionless assists the designer to 

have a better understanding of the true physical parameters that influence the stability. Prior to specifying 

these parameters, it should be noted that in addition to transverse spring stiffness, the last term in the second 

equation of motion, e.g. Eq. (11), can be interpreted as the hydrodynamic torsional stiffness (for further 

explanation, see discussion). Thus, angular velocities and natural frequencies of both motions are calculated 

as below, 

y
y y

a

k
2 f

m m
ω = π =

+  (13) 

( )M(cr)2 21
a2

0

C
2 f U c J Jθ θ

α=

∂
ω = π = − r +

∂α  (14) 

In order to make the characteristic equation dimensionless, the following parameters are defined.  

U / c
λ

λ =

 (15) 

2 a
2

a

J J
(m m ).c

+
γ =

+  (16) 

x a
r

a

S SS
(m m ).c

+
=

+  (17) 
2

a

.cA
2(m m )

r
=

+  (18) 
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y
y

a y

C
2 (m m )

ξ =
⋅ + ⋅ω  (19) 

a

C
2 (J J )

θ
θ

θ

ξ =
⋅ + ⋅ω  (20) 

ry
y

UU
.c

=
ω  (21) 

M (cr )

2

r C

0

UU
.c A

θ −∂
θ ∂α

α=

γ
= =
ω  (22) 

r
RR
c

=
 (23) 

where the imaginary part of �̃� shows the ratio of the time that takes a flow particle to pass the chord length to 

the period of oscillation; 𝛾 is the radius of gyration about pivot point; Sr is the dimensionless distance of 

centre of gravity from pivot point; A is the inverse of mass ratio; ξy and ξθ are the damping ratio of 

transverse and torsional motions in water respectively; Ury and Urθ are the reduced velocities; and Rr is the 

dimensionless distance of the reference point. 

By substituting the above parameters, the dimensionless form of the characteristic equation is as below,  

4
i

i
i 1

c 0
=

λ =∑ 



 (24) 
22

4 rc S = γ − 

 

( ) ( )M(cr) y2 2L
3 r r r r D 0

0 ry r0

C Cc A S R A R S C 2 ( )
U U

θ
α=

α= θα=

 ∂ ξ  ξ∂
= − + γ − + + γ +  ∂α ∂α   



 
2

y M(cr) y2 2L
2 r D2 0

0ry r ry rry 0

L
r

0

C Cc A 1 2R 2A C 4
U U U UU

CAS

θ θ
α=

α=θ θα=

α=

  ξ ∂ ξ ξ ξγ ∂
= − + + γ + + γ +      ∂α ∂α   

∂
− ∂α 



 
2

y M(cr) M(cr)2r
1 D2 2 0

ry rry ry0 0

C CRc A 2 2 A C
U UU U

θ
α=

θα= α=

  ξ ∂ ∂ξγ
 = − + + −   ∂α ∂α   



 

M(cr)
0 2

ry 0

C1c A
U α=

 ∂
= − 

∂α  


 
The characteristic Eq. (24) is solved numerically for a given system to find the current velocity at which the 

system becomes unstable, i.e. the critical condition with Real(�̃�) = 0. To this end, Eq. (24) is solved for a 
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small velocity and the stability of roots is checked by assessing the sign of their real part. If all roots are 

stable, then the equation is solved again for an increment in velocity and roots are investigated accordingly. 

This loop is continued and the trend of roots variation against velocity increase is tracked down until either 

the real part of one of the roots becomes positive and system goes unstable or the magnitude of current 

velocity exceeds the possible limit in reality.  

4 Verification 

A series of cylinder tests was carried out by ExxonMobil at David Taylor Model Basin (Slocum et al., 2004). 

One of the tests was on a rigid cylinder with the fairing shown in Figure 4.  

In part of these tests, a submerged horizontal spring mounted cylinder was towed through still water while 

transverse motion was measured. A rigid test cylinder with a diameter of 22cm and a length of 390cm was 

fitted with six independent fairing segments, each with a span of 61.2cm, a chord length of 52.6cm, and a 

maximum thickness of 23.2cm. This system can be modelled with a fairing and a transverse spring as 

explained earlier. Based on the measured specifications of the test, the dimensionless parameters are 

evaluated as A = 0.8435, γ2 = 0.0792 and Sr = 0.2016. Rr is a reference length for average effect of angular 

velocity on the angle of attack. For a thin airfoil which rotates about its elastic axis, Rr is chosen to give the 

AoA at a point three-quarters of the way back from the leading edge (Fung, 2002). For a faring, Rr is 

estimated to be in the range of [0,34 −
1
2t/c] (Khorasanchi, 2009). The ratio of c/t is equal to 2.267 in this 

example and therefore, Rr is at most 0.53 for a flat plate. In an airfoil it reduces and is selected as Rr  = 0.40. 

With respect to damping, some experimental tests report high level of in-water damping ratio for riser fitted 

with fairing, e.g. 0.10 to 0.18 (Lee et al., 2004). However, as the riser is rigid in this test and does not 

experience any tangible deformation, its contribution to the transverse damping of the system is smaller. 

Thus, half of the reported value in the technical literature was deployed in calculation, i.e. ξy = 0.05. 

Moreover, as the tests emphasise on the rotational freedom of fairing, the positive role of torsional friction 

damping is ignored in favour of being on the safe and conservative margin, i.e. ξθ = 0.0. The last required 

data is the hydrodynamic coefficients of the fairing. The lift-curve slope and mean drag at the aerodynamic 

centre were selected according to the reported data. These coefficients need to be scaled to the chord length 

of the fairing based on Eq. (6) and (7), i.e. ∂CL∂α �α=0 = 1.146 ( 1
radian) and 𝐶D|α=0 = 0.176. Lift-curve slope, 
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measured at the aerodynamic centre, was shifted to the centre of rotation (CR) to compute the moment-curve 

slope, i.e. ∂CM(cr)
∂α �

α=0
=  − 0.0344 ( 1

radian). 

The critical reduced velocity, Ucr, at which the real part of a solution to the characteristic Eq. (24) becomes 

positive, is obtained numerically by increasing the reduced velocity and solving this equation at each step. 

For this case study, the analytical model shows the system becomes unstable at Ucr = Ury(critical) = 0.51, which 

is located in the range of test results (0.42-0.56) (Slocum et al., 2004). This demonstrates the good agreement 

of the theoretical model with previous experiment.  

The trace of eigenvalues is illustrated in Figure 5. The red circles in this figure show the eigenvalues 

corresponding to the highest velocity at which a pair of them crosses the imaginary axis and their real part 

becomes positive. According to Eq. (15) and (21), the imaginary and real parts of roots are multiplied by Ury 

to remove the effect of non-dimensionalisation. Hence, the horizontal and vertical axes in this figure are 

Real(𝜆/𝜔y) and Imag(𝜆/𝜔y) respectively. The imaginary part of the eigenvalue, Imag(λ), represents the 

frequency of vibration while the real part shows the trend of amplitude variation. 

As the governing equations are coupled, the relevant eigenvector or mode shape of each eigenvalue is 

coupled in the sense it has elements in both DOFs. Thus, it is not possible to attribute the modes into pure 

transverse or torsion motion.  

5 Parametric Study 

To investigate the effect of key parameters on the critical velocity, a typical drilling riser was selected. Grant 

and Patterson (1977) performed a series of wind-tunnel tests on two fairing sections for this riser. The chord 

length c to thickness t ratio of the selected fairing was fixed at 2. This fairing with the total thickness of 

1.016 m embraced the riser of 0.609 m diameter plus the choke and kill lines. No buoyancy module was used 

and sea water filled the gap between the riser and fairing’s shell. The fairing was fabricated from 0.0034 m 

(10 gauge) steel. The riser carries drilling mud with the density of 1795.97 kg/m3. The effects of the choke 

and kill lines are ignored in this example. Since nothing was mentioned in the paper about the wall thickness 

of steel riser, it is assumed to be in the typical range of 0.04 m. 
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With reference to the definition of dimensionless parameters and considering the typical geometry of the 

selected fairing with blunt end and fins, the structural properties are calculated easily as 𝛾2 = 0.0853, 𝑆r = 

0.1908 and 𝐴 = 0.3992. No data was reported in Grant and Patterson’s research about the damping 

properties of the system. Hence, with reference to a study on short fairings (Lee et al., 2004), damping 

coefficients are selected in the lower bound, i.e. ξy = 0.05 and ξθ = 0.01. This results in a lower critical 

current velocity. The fairing was tested in the wind-tunnel (Grant and Patterson, 1977) and the required 

hydrodynamic coefficients can be extracted from the reported curves as 𝐶D|α=0 = 0.09, ∂CL∂α �α=0 = 3.05 ( 1
radian) 

and ∂CM(cr)
∂α �

α=0
= −0.24 ( 1

radian). The last hydrodynamic property to obtain is the reference length of Rr. The 

ratio of c/t is equal to 2.0 and Rr is at most 0.50 for a flat plate. It reduces in a fairing and thus is selected 

here again as 0.40. 

The analytical model predicts the system goes unstable at Ucr = Ury = 0.43. In the following, the set of 

parameters corresponding to the above example is selected and a parametric study is carried out to identify 

how the variation of these parameters influences the threshold of instability. Each parameter varies in the 

range of half to five times of the present value unless otherwise is stated. The red circle in following figures 

shows the base case.  

Figure 6 shows that the instability onset is not particularly sensitive to the drag coefficient. The drag 

coefficient came into play through the process of finding instantaneous angle of attack (AoA) and emerged 

in hydrodynamic damping terms. The undesirable effect of drag on Ucr is negligible perhaps because it is the 

sum of drag and lift slope which forms a term in hydrodynamic damping. Moreover, the value of drag in this 

example is much less than the lift slope and therefore its impact is not tangible. Lift force as observed in 

Figure 7 has an adverse effect on stability of the system. In fact, the threshold of stability reduces as the 

slope of the lift coefficient increases.  

The moment coefficient displays both a positive and negative role in instability. In Figure 8, as the absolute 

value of ∂CM/∂α rises, the critical reduced velocity can increase or decline based on where the initial value is. 

It will be discussed later that ∂CM/∂α < 0 is a necessary condition for stability and when it is violated, the 

system is unstable. Further investigation confirms this issue in this example and shows that the real part of 

one of the solutions is positive for a very small current speed if ∂CM/∂α > 0. In addition, it was observed that 
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if the magnitude (absolute value) ∂CM/∂α becomes large enough, it makes the system stable for a normal 

range of Ucr. In this example, for large magnitude the system was still stable while Ucr increased up to 6. 

It was mentioned earlier that the parameter Rr will be in the range of 0< Rr < ¾ - ½ t/c. In this example with 

the length to chord ratio of 2, Rr cannot exceed 0.5. Therefore, in the parametric study shown in Figure 9, Rr 

varies between 0.5 to 1.5 times the base value (Rr = 0.40). The upper limit is selected beyond physical limit 

merely to investigate the effect of this parameter more clearly. Figure 9 indicates that the critical reduced 

velocity increases and then decreases as the length of Rr extends. 

Parameter A is equal to the inverse of mass ratio of a square section with a side as long as the chord. 

Therefore, it is proportional to the ratio of fluid mass to structural mass. It is also known that, in general, as 

the ratio of fluid mass to structural mass increases so does the inclination toward flow-induced vibration. In 

this example, Figure 10 is in conformity with this principle and confirms the above point. It demonstrates 

that as A rises, the critical reduced velocity declines. 

According to Figure 11, the parameter γ which is a dimensionless symbol of the radius of gyration about the 

pivot axis has a positive influence on Ucr. This shows that as the distribution of mass increases its distance 

from the pivot point, the system becomes unstable at a higher velocity. One simple conclusion may be that 

moving the buoyancy material to a farther distance or as reported in the literature, adding mass to the tail of 

the fairing, like bumps and fins, improves the stability.  

With reference to the definition of Sr, the fraction of (Sx+Sa)/(m+ma) implies the longitudinal distance of the 

gravity centre of all rotating masses including added mass effect from pivot axis. Hence, Sr is a 

dimensionless description of this distance with respect to chord length. On the other hand, the parameter Sr 

shows how two DOFs are coupled inertially (see Discussion). Figure 12 says that as the level of coupling 

decreases and the two DOFs become inertially independent, critical reduced velocity is moved to higher 

values and the stability is strengthened. 

In other words, this instability is made from a combination of the torsional and transverse modes with phase 

and amplitude that gain energy from the flow and when either mode acts alone, the system is stable. Blevins 

(2001) explained this through the natural frequency. He showed that at the onset of instability, there is a 

tendency for natural frequencies of both transverse and torsional modes to unite to form a single frequency-
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coupled mode that does not exist without flow. Based on the present study, one way to hinder the instability 

of fairing is to reduce Sr and coupling by moving the mass centre towards the pivot point. This idea is called 

“mass balancing” in aerodynamics. In addition, this study showed that beyond a certain amount of Sr, for 

instance 0.292 in this example, the system is unstable for any small current velocity. Thus, in Figure 12 Sr 

varies within 10% to 150% of the base value. 

As expected, structural damping in both forms, transvers and torsion, improves the stability span and delays 

the instability to a higher current velocity (Figure 13 and Figure 14 ). In this figure damping ratio varies 

between 0.5 to 10 times of the base value as this value was very small. 

6 Discussion 

It should be noted that the governing Eq. (10) and (11) are coupled in two ways. These equations are coupled 

inertially through the term (𝑆x + 𝑆a), the first mass moment of area. This demonstrates how the acceleration 

in one DOF affects the inertia of the other DOF. They are also interrelated hydro-dynamically through the 

angle of attack. It is due to the fact that hydrodynamic coefficients, which exist in both equations, were 

written in a linear form of AoA. In addition, AoA is influenced by the distortion angle as well as both 

transverse and torsion velocities, �̇� and �̇�. Thus, these terms as a part of AoA emerge in these equations and 

inter-relate them thoroughly. 

Through the process of expanding hydrodynamic coefficients at a small AoA, a number of hydrodynamic 

terms contributing to stiffness and damping appeared in the governing Eq. (10) and (11). These terms 

expounds how the hydrodynamic characteristics of a fairing can change the behaviour of the system.  

For example, it is obvious that if the system absorbs energy instead of dissipating that through damping, the 

amplitude of vibration rises continuously and systems goes unstable. In other words, if one of the damping 

coefficients becomes negative, it means part of the system is gaining energy and, depending on its extent, it 

can provide the ground for potential instability. Therefore, negative damping can be interpreted as an alert 

for the risk of instability. Back to these equations, the two terms of 1
2𝜌𝑅𝑈𝜌(∂CL∂α �α=0 + 𝐶D|α=0)�̇� and  

(−1
2𝜌𝑈𝜌

2 ∂CM(cr)
∂α �

α=0
)�̇� in Eq. (10) and (11) respectively are parts of the hydrodynamic contribution of the 

fairing to damping. Consequently, one can say that having a positive coefficient in these terms is a necessary 
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condition for stability of the system, i.e. 0 < (∂CL∂α �α=0
+ CD|α=0) and 0 < −(∂CM(cr)/∂α�

α=0), whereas 

having no roots with a positive real part for the characteristic Eq. (24) is the sufficient condition, i.e. Ury < 

Ucr.     

The third point relates to yet another contribution of the hydrodynamic coefficients and it should be noted 

that the coefficient of the last term in Eq. (11), −(12𝜌𝑈
2𝜌2 ∂CM(cr)

∂α �
α=0

)𝜃, can be interpreted as the only 

torsional stiffness which is generated by moment coefficient of the fairing. Thus, if this stiffness is positive, 

which in fact is identical to satisfying one of the necessary conditions above, the moment generated by fluid 

force on the fairing, twists it back and helps the fairing with self-alignment to the current. However, in case 

of negative torsional stiffness, i.e. −(∂CM(cr)/∂α�α=0) < 0, any infinitesimal rotation from the rest will 

develop further. In this case, the zero AoA will not be the equilibrium position any more. The equilibrium 

position as shown in Figure 15 will be at an angle α2 at which the moment coefficient is zero and the slope of 

moment curve is negative. 

Since the fairing is a symmetric section, therefore its lift and moment coefficients are counter-symmetric. 

Thus, instead of one single point of equilibrium at zero AoA, there exist two identical equilibrium positions 

at AoA of α2 and -α2. In this case, at any infinitesimal twist, say 0+, the slope of moment curve is positive 

and consequently the rotation develops in the positive direction of AoA up to angle α1. At this point, the 

moment is still positive and hence twists the fairing in the positive direction further while the magnitude of 

moment reduces. This continues up to the point α2. At this point, there is no moment to rotate the fairing and, 

moreover, the slope of the curve is negative and any disturbance will be restored by generation of 

appropriate counter-moment. It means α2 and likewise its counterpart -α2 are the equilibrium positions. In 

the case of any disturbance, the fairing may switch between these two equilibrium positions depending on 

the strength of counter-moment. This shift and transition between equilibrium positions resemble the 

fishtailing as several studies reported that. Thus, if any modification to the fairing’s section, e.g. adding fins, 

can resolve the issue of moment coefficient, then the problem of misalignment, and one of the likely causes 

for fishtailing, will be sorted out. Therefore, it can be concluded that these issues are separate and 

independent of instability and can occur while the fairing is statically stable at its equilibrium positions rather 

than zero AoA. In other words, misalignment and perhaps fishtailing in one hand and instability in the other 
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hand are two different mechanisms with different governing parameter; one by the moment coefficient and 

the other by the characteristic equation. 

Identifying the hydrodynamic stiffness has another interesting outcome. More scrutiny of the last term in Eq. 

(11) reveals that torsional stiffness is proportional to the square of current velocity. It means that as a result 

of any rise in velocity, the system becomes stiffer torsionally and it is therefore expected that the frequency 

of torsional vibration increases too. On the other hand, it should be noted that the imaginary part of the 

eigenvalue, Imag(λ), represented the frequency of vibration. This feature is illustrated in Figure 5 where the 

imaginary part of two conjugate eigenvalues on the left branches is shown to be increasing. In fact, as the 

current speed increases, the associated frequency of these eigenvalues rises too. Moreover, as the current 

speed starts from nearly zero in Figure 5, the only torsional stiffness which is due to hydrodynamic force and 

proportional to the square of current velocity is therefore very small and almost zero. Thus, since there is no 

torsional stiffness, the frequency of vibration should be zero as well. Figure 5 confirms that the left branches 

commence from the origin point where the frequency and amplitude are zero. 

7 Conclusion 

In this study, a two-dimensional problem of a fairing on a rigid riser was considered. A two-degree-of-

freedom model was developed, i.e. cross-flow translation of the riser and fairing as well as the angular 

rotation of the fairing. Hydrodynamic forces are dependent on instantaneous AoA and therefore, the effect of 

motion, both transverse and torsional, on AoA was considered. To assess the instability onset conditions, an 

infinitesimal disturbance from the equilibrium position was assumed to track the tendency of vibration 

amplitude. Within this small interval, the variation of hydrodynamic coefficients was reasonably postulated 

to be linear. Finally, an eigenvalue analysis was carried out to clarify when the system goes unstable. The 

characteristic equation was made dimensionless to present the significance of physical parameters. It was 

also highlighted that the governing equations are coupled in two ways, inertially and hydro-dynamically. 

Moreover, the effect of hydrodynamic damping emerged as a necessary condition for stability. In light of the 

hydrodynamic stiffness, it was explained that misalignment and perhaps fishtailing in one hand and 

instability in the other hand are different mechanisms with different governing parameters and should not be 

confused. 
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A parametric study was also carried out. The hydrodynamic coefficients showed a significant role in the 

stability of the system. The lift coefficient had an adverse effect while the moment coefficient and parameter 

Rr, depending on their value, could have positive or negative influences. The parametric study confirmed this 

principle that the increase of the mass ratio improves the stability. Moreover, growth in radius of gyration 

resulted in a higher critical velocity. This showed the benefit of mass distribution in stability. It was also 

demonstrated that as two DOFs become more independent inertially, the stability is improved. This is 

achievable by moving the mass centre towards the pivot point. Structural damping, as expected, enhanced 

the stability. In summary, the parametric study confirms the significance of two parameters which were 

already neglected in a simpler model. They include damping and the effect of body’s motion in AoA. 
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Figures 

 

 

Figure 1  Typical Response of A System vs. Reduced Velocity. 

 

 

Figure 2  Local and Global Coordinates, Degrees of Freedom. 
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Figure 3  Instantaneous Angle of Attack (AoA). 

 

Figure 4  ExxonMobil Fairing on a Rigid Cylinder. 

 

Figure 5  Trend of Eigenvalues by Velocity Increment.  
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Figure 6 Ucr vs. Drag Coefficient. 

 

Figure 7  Ucr vs. Lift Coefficient. 
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Figure 8  Ucr vs. Moment Coefficient. 

 

Figure 9  Ucr vs. Rr. 
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Figure 10  Ucr vs. A. 

 

Figure 11  Ucr vs. γ2. 
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Figure 12  Ucr vs. Sr. 

 

Figure 13  Ucr vs. Transverse Damping. 
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Figure 14  Ucr vs. Torsional Damping. 

 

Figure 15  Equilibrium AoA. 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Torsional Damping 

U
cr

α 

CM(cr) 

α2 0 

M (cr )C 0∂
∂α >

 

M (cr )C0 ∂
∂α<  

α1 


	Abstract
	1 Introduction
	2 Governing Equations of Motion
	3 Stability Analysis
	4 Verification
	5 Parametric Study
	6 Discussion
	7 Conclusion
	8 References

