Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

In-plane switching of a homeotropically aligned, thin smectic C* liquid crystal

McKay, G. and Mackenzie, K.R. (2002) In-plane switching of a homeotropically aligned, thin smectic C* liquid crystal. Ferroelectrics, 277. pp. 107-116. ISSN 0015-0193

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Most early theoretical studies of smectic liquid crystals exclude variations in the interlayer spacing or changes in molecular tilt with respect to the smectic layer normal, e.g. Leslie et al . [1] Recently McKay and Leslie [2] presented a theory for smectics which does allow for variations in tilt. With this theory they modelled a smectic C liquid crystal confined in a cell, its layers coplanar with the boundary plates, but subject to strong anchoring incompatible with the smectic C tilt. Subsequently Mazzulla and Sambles [3] found good agreement between theoretical predictions using the theory and their experimental observations. We present a model similar to [2] which also allows a twist in the molecule profile across the thickness of the sample. We consider a thin sample of Sm C* liquid crystal at a temperature well below the Sm A-Sm C* phase transition. A twist profile is induced by incorporating an in-plane electric field (e.g. Oh-e and Kondo [4] ) into the model.