Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Exploiting Hessian matrix and trust-region algorithm in hyperparameters estimation of Gaussian process

Zhang, Y. and Leithead, W.E. (2005) Exploiting Hessian matrix and trust-region algorithm in hyperparameters estimation of Gaussian process. Applied Mathematics and Computation, 171 (2). pp. 1264-1281. ISSN 0096-3003

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Gaussian process (GP) regression is a Bayesian non-parametric regression model, showing good performance in various applications. However, it is quite rare to see research results on log-likelihood maximization algorithms. Instead of the commonly used conjugate gradient method, the Hessian matrix is first derived/simplified in this paper and the trust-region optimization method is then presented to estimate GP hyperparameters. Numerical experiments verify the theoretical analysis, showing the advantages of using Hessian matrix and trust-region algorithms. In the GP context, the trust-region optimization method is a robust alternative to conjugate gradient method, also in view of future researches on approximate and/or parallel GP-implementation.