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Abstract. This paper reviews and compares three different linear algebraic signal subspace techniques for angle of

arrival estimation. These include a polynomial matrix approach to multiple signal classification (MUSIC), a parameterised

spatial covariance matrix approach, and an auto-focussing based version of coherent signal subspace estimation applied

to MUSIC. These approaches are expressed in the framework of polynomial space-time covariance matrices and their

polynomial eigenvalue decomposition, thus highlighting their commonalities and differences. Simulation results comparing

the accuracy of these broadband angle of arrival estimation methods are presented.

1. Introduction

Powerful narrowband angle of arrival (AoA) estimation meth-

ods, such as the multiple signal classification (MUSIC) algo-

rithm [1], are not directly applicable to the broadband case,

where time delays rather than phase shift need to be considered

in distinguishing between spatially separated sources. Narrow-

band approximations to the broadband case, such as perform-

ing the MUSIC algorithm independently in frequency bins,

does not work well if sources are coherent [2] or signal fre-

quencies do not coincide with frequency bins, leading to poor

worst-case performance scenarios [3].

Dedicated broadband AoA estimation algorithms include the

coherent signal subspace (CSS) method [2,4], which combines

covariance matrices at different frequency bins coherently by

means of focussing matrices. The focussing matrices, in their

simplest form, pre-steer the data such that the signal of interest

appears towards broadside, where narrowband methods suf-

fice for estimation. Determining the focussing matrices usu-

ally requires a degree of knowledge of the scenario prior to

estimation. A recent approach to auto-focussing [5] claims to

overcome this problem, and is based on a bin-wise eigenvalue

decomposition of covariance matrices.

Further broadband approaches include a recent parameterised

spatial covariance (PSC) approach [6,7] which also pre-steers

the data to then form a narrowband covariance matrix, and a

subspace approach [8] derived from a polynomial eigenvalue

decomposition of the space-time covariance matrix [9], which

has been employed to generalise MUSIC to the broadband

case.

This paper analyses the auto-focussing, parameterised spatial

covariance matrix, and polynomial MUSIC approaches in the

framework of polynomial space-time covariance matrices and

broadband steering vectors. To achieve this, the broadband

array model, and resulting steering vectors and covariance

matrix are introduced in Sec. 2.. Broadband approaches to

AoA estimation are outlined in Sec. 3. and, together with

Sec. 4., formulated within a polynomial matrix framework. A

simulation comparison between the different methods is then

performed in Sec. 5., with conclusions being drawn in Sec. 6..

Notation. Matrix and vector quantities are represented by

upper- and lowercase bold variables, e.g. A and a. The Her-

mitian transpose of A is denoted as AH. Polynomial vec-

tors and matrices are written as a(z) and A(z), with the

parahermitian Ã(z) = AH(z−1). A transform pair a[n] and

A(z) = ∑∞
n=−∞ a[n]z−n is abbreviated as a[n] ◦—• A(z).

2. Broadband Steering Vectors and Space-Time Covari-

ance Matrix

Below, we define a steering vector to characterise a source in

a broadband scenario in Sec. 2.1, which is used to define a

polynomial space-time covariance matrix in in Sec. 2.2 and its

polynomial eigenvalue decomposition in Sec. 2.3.

2.1 Broadband Steering Vector

Given an array of M-element containing omnidirectional sen-

sors located at positions rm, m = 1 . . .M, a signal vector x[n],

x[n] =











δ [n−∆τ1]
δ [n−∆τ2]

...

δ [n−∆τM]











∗ s[n] = a[n]∗ s[n] , (1)

is collected if the array is illuminated by a source. We assume

that the source signal measured at the origin is s[n], with ∗
denoting convolution and delays ∆τm = 1

c fs
kTrm, m = 1 . . .M,
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where c is the propagation speed in the medium, fs is the sam-

pling rate, k is the normal vector of the source’s wave front,

and k/c is known as the slowness vector of the source.

The delays δ [n − ∆τ] are generally fractional delays [10],

implementable e.g. via sinc functions sampled off their zero-

crossing, δ [n−∆τ] = sinc[n−∆τ], while a[n] in (1) is referred

to as a broadband steering vector. The later, through the nor-

mal vector k’s dependence on azimuth ϕ and elevation ϑ ,

kϕ,ϑ =





cosφ sinθ
sinφ sinθ

cosθ



 , (2)

defines the spatial characteristics of a far-field source, and will

also be denoted as aϑ ,ϕ [n].

2.2 Polynomial Space-Time Covariance Matrix

In a scenario with L independent far field broadband sources

sl [n], l = 1 . . .L, each characterised by a broadband steering

vector al [n], the signal model becomes

x[n] =
L

∑
l=1

al [n] ∗ sl [n] + v[n] , (3)

with v[n] representing spatially and temporally uncorrelated

noise with covariance E
{

v[n]vH[n]
}

= σ2
v I. To capture infor-

mation contained in the data vector x[n] requires a space-time

covariance matrix R[τ] = E
{

x[n]xH[n− τ]
}

with lag parame-

ter τ . The cross-spectral density matrix R(z) = •—◦ R[ν],

R(z) =
L

∑
l=1

a(z)aH(z−1)Rl(z)+σ2
v I (4)

with Rl(z) the power spectral density of the lth source, forms a

polynomial matrix.

2.3 Space-Time Covariance Matrix and Polynomial Eigen-

value Decomposition

The power spectral matrix in (4) can be decomposed to yield a

polynomial EVD [9]

R(z) = Q(z)Λ(z)Q̃(z) =
M−1

∑
m=0

λm(z)qm(z)q̃m(z) (5)

with paraunitary Q(z), i.e. Q(z)Q̃(z) = I. The matrix Λ(z) is

diagonal and contains polynomial eigenvalues λm(z), which

are spectrally majorised, such that

λm(e
jΩ)≥ λm+1(e

jΩ) ∀Ω ,m = 0 . . . (M− 2) . (6)

Thresholding the eigenvalues reveals the number of indepen-

dent broadband sources contributing to R(z), and permits a dis-

tinction between signal-plus-noise and noise only subspaces

R(z) = [Qs(z)Qn(z)]

[

Λs(z) 0

0 Λn(z)

][

QH
s (z)

QH
n (z)

]

(7)

similar to a narrowband EVD [11]. Specifically, the nullspace

Q̃n(z)

Q̃n(z) =







q̃L(z)
...

q̃M−1(z)






(8)

is spanned by vectors q̃L(z) which have the same appearance

as broadband steering vectors.

3. Broadband Angle of Arrival Estimation

In analysing broadband AoA estimation approaches, we

first review the parameterised spatial covariance matrix

method [6,7] in Sec. 3.1, followed by an auto-focussing

approach [5] to coherent signal subspace-based estimation in

Sec. 3.2 and polynomial MUSIC [8] in Sec. 3.3.

3.1 Parameterised Spatial Correlation (PSC) Matrix Method

The idea of the broadband AoA estimation method in [6,7] is

based on testing the zero-lag coherence of a spatial correlation

matrix calculated from appropriately pre-steered array data.

Knowing the array configuration, a broadband steering vector

can be defined for a specific AoA represented by azimuth ϕ
and elevation ϑ , and pre-steering can be accomplished by a

matched broadband steering vector. The covariance matrix of

the pre-steered data is given by

Rϕ,ϑ = E

{

yϕ,ϑ [n]y
H
ϕ,ϑ [n]

}

(9)

yϕ,ϑ [n] =







x[n−∆τ0(ϕ ,ϑ)]
...

x[n−∆τM−1(ϕ ,ϑ)]






= Γϕ,ϑ [n]∗ x[n] (10)

with the delay ∆τm(ϕ ,ϑ) calculated akin to Sec. 2.1, and the

diagonal pre-steering system

Γϕ,ϑ [n] = diag{δ [n−∆τ0(ϑ)] . . .δ [n−∆τM−1(ϑ)]} . (11)

The proposed method then evaluates the maximum eigenvalue

of Rϕ,ϑ in (9) for a range of angles {ϕ ,ϑ}, with the best match

indicated by {ϕopt,ϑopt} = argmaxϕ,ϑ{maxi λi(Rϕ,ϑ )},

where λi(Rϕ,ϑ ) denotes the ith eigenvalue of Rϕ,ϑ .

In terms of the space time covariance matrix and broadband

steering vectors defined in Sec. 2., the problem can formulated

as

{ϕopt,ϑopt}= argmax
ϕ,ϑ

{max
i

λi(R̂ϕ,ϑ [0])} (12)

with R̂ϕ,ϑ [0] being the evaluation for lag zero of the space-time

covariance matrix R̂ϕ,ϑ [τ] ◦—• R̂ϕ,ϑ (z)

R̂ϕ,ϑ (z) = diag
{

aϕ,ϑ (z)
}

R(z)diag
{

ãϕ,ϑ (z)
}

(13)

of the pre-steered data.
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3.2 Coherent Signal Subspace Method

In the coherent signal subspace approach [2,4], covariance

matrices are calculated in a number of frequency bins, which

are then coherently combined such that their signal subspaces

align into one single scalar-valued correlation matrix to which

narrowband high resolution AoA techniques such as MUSIC

can be applied. The coherence across different frequency bins

is created by a frequency-dependent and unitary focussing

matrix T(e jΩ), such that

Rcoh =
N−1

∑
i=n

αnT(e jΩn)R(e jΩn)TH(e jΩ) , (14)

where αn a weighting for maximum ratio combination of its

coherently rotated contributions. The calculation of focussing

matrices in the context of coherent signal subspace methods

can be based on approximate knowledge of the AoA of the

source of interest, or be obtained numerically by a best fit of

a rotated T(e jΩn) to a reference T(e jΩo), whereby the rotation

forms the focussing matrix.

A recent auto-focussing method in [5] calculates, based on a

reference frequency Ω0, an EVD of the appropriate frequency-

bin covariance matrix R(e jΩ0),

Λo = QH
0 R(e jΩ0)Q0 . (15)

Extracting the modal matrix for frequency bin k, k = 0 . . . (K−
1), the auto-focussing matrix is constructed according to

T(e jΩk ) = Q0QH(e jΩk ) . (16)

Therefore, the coherent covariance matrix in (14) can be diag-

onalised by Q0 to provide

Λcoh = QH
0 RcohQ0 = diag{λ1 λ2 . . . λM} , (17)

with λm, m = 1 . . .M the eigenvalues of Rcoh in (14). If the

eigenvalues Rcoh reveal R linearly independent sources, then

the last M − R columns of Q0 =
[

Q0,sQ
⊥
0,s

]

contained in

Q⊥
0,s ∈C

M×(M−R) span the noise-only subspace of the coherent

covariance matrix.

The standard narrowband MUSIC algorithm [1] can be applied

to Rcoh by probing its noise-only subspace Q⊥
0,s with a set of

narrowband steering vectors at the reference frequency Ω0.

Based on the transform domain broadband steering vector

aϕ,ϑ (z) at the reference frequency Ω0, the MUSIC spectrum

for auto-focussing (AF)

SAF(ϕ ,ϑ)= ‖Q⊥
0,saϕ,ϑ (e

jΩ0)‖−2
2

=
1

aH
ϕ,ϑ (e

jΩ0)Q⊥,H
0,s Q⊥

0,saϕ,ϑ (e jΩ0)
(18)

is obtained.

3.3 Polynomial MUSIC Algorithm

Generalising the concept of the narrowband MUSIC algorithm

by using the polynomial EVD in (7), the idea is to probe the

broadband noise-only subspace with broadband steering vec-

tors, generalised quantity

Γϕ,ϑ (z) = ãϕ,ϑ (z)Qn(z)Q̃n(z)aϕ,ϑ (z) .

Noting that (3.3) represents a power spectral density rather

than a norm measuring the vicinity of aϕ,ϑ (z) to the nullspace

of Q̃n(z), two versions of the a polynomial MUSIC (P-

MUSIC) algorithm were proposed in [8], which are outlined

below.

Spatial P-MUSIC. The energy contained in the signal vector

Q̃n(z)aϕ,ϑ (z) is related to the zero lag term γϕ,ϑ [0] of the auto-

correlation-type sequence γϕ,ϑ [τ] ◦—• Γϕ,ϑ (z). This measure

is only dependent on the angle of arrival ϑ , and collects all

energy across the spectrum. Instead of searching for the steer-

ing vectors providing minimum energy, the reciprocal

SPS(ϕ ,ϑ) =
1

γϕ,ϑ [0]
. (19)

is maximised by the angle of arrival characterised by the

azimuth/elevation pair {ϕ ,ϑ} of signal sources.

Spatio-Spectral P-MUSIC. With (3.3) describing a power spec-

tral density, spectral clues can be exploited in addition to the

spatial information extracted by (19). Therefore in addition to

spatial localisation of sources,

SPSS(ϕ ,ϑ ,Ω) =

(

∞

∑
τ=−∞

γϕ,ϑ [τ]e
− jΩτ

)−1

(20)

can determine over which frequency range sources in the direc-

tion defined by the steering vector aϕ,ϑ (z) are active. PSS-

MUSIC was introduced in [8], but will be omitted from the

comparison below, since the benchmark method only retrieves

AoA information.

4. Analytical Comparison

The auto-focussing approach to coherent signal subspace esti-

mation is linked to the polynomial EVD of the space-time

covariance matrix in Sec. 4.1, while Secs. 4.2 and 4.3 relate

the auto-focussing approximation of coherent signal subspace

MUSIC to the polynomial PSS- and PS-MUSIC methods

in [8].

4.1 Auto-Focussing Matrices via Polynomial Eigenvalue

Decomposition

With the modal matrix Q0 in (16) obtained at the reference

frequency Ω0 via EVD of R(e jΩ0), the focussing matrix can be

formulated as a paraunitary matrix T(z)|z=e jΩ = Q0QH(e jΩ).
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Replacing the summation over frequency bins in (14) by the

integration over the Fourier transform (i.e. K → ∞) leads to

Rcoh ≈
1

2π

∮

{

T(z)R(z)T̃(z)
}

z=e jΩ dΩ (21)

=Q0
1

2π

∮

{

Q̃(z)R(z)Q(z)
}

z=e jΩ dΩ QH
0 . (22)

Since the paraunitary matrix Q(z) diagonalises R(z), the

argument under the integral is the polynomial EVD in (5),

resulting in a diagonal matrix of power spectral densi-

ties, 1
2π

∮

Γ(e jΩ)dΩ = Γ[0], where Γ[0] is the evaluation of

Γ[τ] ◦—• Γ(z) for zero lag. Therefore

Rcoh ≈ Q0Γ[0]QH
0 = Q0







σ2
1

. . .

σ2
M






QH

0 (23)

represents the coherent covariance matrix of the auto-focussing

approach in terms of the polynomial EVD of the cross spectral

density matrix.

Given that the DFT in (14) is a sufficiently accurate representa-

tion of the Fourier transform formulation in (21), then (17) and

(23) are equivalent with Λ = Γ[0]. Further, the PEVD of the

CSD matrix provides a paraunitary Q(z) that leads to an auto-

focussing matrix Q0Q̃(z) which is continuous in frequency.

4.2 Relation between Auto-Focussing MUSIC and PSS-

MUSIC

Provided that the estimation of the number of linearly indepen-

dent sources, R, is the same for the auto-focussing approach of

CSS and from (23) of the polynomial approach, then with Q0

being the evaluation of the paraunitary Q(z) at the reference

frequency Ω0, i.e. Q0 = Q(z)|
z=e jΩ0 , it follows that

SCSS(ϕ ,ϑ) = SPSS(ϕ ,ϑ ,e jΩ)|Ω=Ω0
. (24)

Therefore, the auto-focussing approach to coherent signal sub-

space MUSIC estimation is equivalent to evaluating the poly-

nomial spatio-spectral MUSIC spectrum at the reference fre-

quency Ω0.

To obtain the same spatio-spectral characterisation of the array

data as provided by PSS-MUSIC with the CSS approach, a

sequence of different modal matrices Q0 at different reference

frequencies Ω0 could be calculated, for all of which (18) is

evaluated.

4.3 Relation between Auto-Focussing MUSIC and PS-

MUSIC

Noting that in (19),

γϕ,ϑ [0] =
1

2π

2π
∮

0

Γϕ,ϑ (e
jΩ) dΩ , (25)

if the integral can be approximated by a sum over discrete fre-

quency bins, i.e.

γ ≈ 1

K

K−1

∑
k=0

aH
ϕ,ϑ (e

jΩk )Q⊥,H
s (eΩk)Q⊥

s (e
jΩk)aϕ,ϑ (e

jΩk ), (26)

then (26) is the summation over the denominator terms of

(18) for all possible reference frequencies Ωk with Ωk =
2π
K

k,

k = 0 . . . (K − 1). The PS-MUSIC denominator in the above

approximation also appears similar to the incoherent MUSIC

approach stated in [12]; however, here the paraunitary matrix

Q(z) that feeds into (26) has been demonstrated in (23) to

coherent combine the spatio-temporal covariance matrix in the

auto-focussing sense.

5. Simulations and Numerical Results

Below, we illustrate the analysis of the above broadband AoA

estimation algorithms in two examples.

5.1 Example 1 — Single Source Case

To highlight the connection between the auto-focussing

approach and PSS-MUSIC, we first consider a simple toy

problem with a single source in a noise-free environment,

where the space-time covariance matrix and its ideal decom-

position are known. Here, a single broadband source emits an

uncorrelated Gaussian signal, which is captured by an M = 4

element linear array with equispaced sensors that sample criti-

cally in both time and space. The broadband steering vector of

this source is

a1(z) =
1√
M

[1 z−1 . . . z−M+1]T (27)

such that the space-time covariance matrix is given by

R1(z) =













1 z1 . . . zM−1

z−1 1
...

...
. . .

...

z−M+1 . . . . . . 1













. (28)

Because R1(z) is rank one, a manifold of diagonalising poly-

nomial decompositions exists, with one possibility being

Q(z) = diag
{

1 z−1 . . . z−M+1
}

TDFT, (29)

where TDFT is an M-point DFT matrix normalised by
√

M such

that TDFT is unitary. Based on PSS-MUSIC in (??) using a

sampled sinc function, truncated to order 200, to approximate

broadband steering vectors, the spectrum in Fig. 1 emerges.

Normalised to a maximum value of unity, the AoA of the end-

fire source is identified. In line with broadband arrays, at lower

frequencies the fixed aperture degrades the spatial resolution,

with no ability to discern sources at DC.

For the auto-focussing approach, at a given reference fre-

quency Ω0, Rcoh,Ω0
=R(z)|

z=e jΩ0 and Λcoh,Ω0
= diag{1,0 · · ·0}.
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Figure 1. PSS-MUSIC spectrum for a single source at end-fire position,

ϑ = 90◦.
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Figure 2. Difference between the PSS- and auto-focussing (AF) based

MUSIC spectra for a single source at ϑ = 90◦ .

Evaluating the narrowband MUSIC algorithm using narrow-

band steering vectors at Ω0 for a range of K = 64 discrete equi-

spaced reference frequencies Ω0, and the nullspace Q⊥
s (e

jΩ0)
derived from the EVD of Rcoh,Ω0

, a MUSIC spectrum similar

to Fig. 1 emerges.

The difference between the PSS- and AF-MUSIC spectra,

Sdiff(ϑ ,e jΩ) = |SPSS(ϑ ,e jΩ)− SAF(ϑ ,Ω)|, is plotted in Fig.2,

with an error below -10dB. The error is largest where the

MUSIC spectrum is numerically most sensitive, i.e. towards

the source at ϑ = 90◦, and for DC, Ω = 0. The error can be

attributed to the inaccuracies of the truncated sinc functions

to implement fractional delays for the broadband steering

vector, while narrowband steering vectors required for CSS-

MUSIC can always be accurately represented. Note that

for the trivial broadband steering vector towards broadside,

a0◦(z) =
1
M
[1 1 . . . 1]T, the error in Fig. 2 for ϑ = 0◦ is negli-

gible.

For this case with a single source and known covariance

matrix, the integration of the PSS-MUSIC spectrum across

frequency yields the PS-spectrum, which in Fig. 3 is shown

for both the correct PEVD and its iterative approximate solu-

tion using the second order sequential best rotation algorithm

(SBR2) [9]. The significant degradation is due to the sensitivity
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Figure 3. Comparison between PSC, AF-MUSIC (i) evaluated at the centre

frequency Ω0 = π
2

and (ii) integrated according to (26), and PS-MUSIC (iii)

with SBR2-estimated and (iv) ideal PEVD; the bottom graph shows a detail of

the overall response in the top figure.

of the MUSIC algorithm to small modifications of the denom-

inator when close to zero. It can be seen that the difference to

the integrated CS-MUSIC is very small. As a benchmark, the

parameterised spatial covariance matrix approach [6,7] is also

plotted in Fig. 3. Unlike the MUSIC approaches, PSC does

not display an inverse value, and hence will not exhibit the

same sharp peaks and at least appear to possess a much lower

resolution in comparison.

5.2 Example 2 — Dual Source Case

In addition to a source at end-fire, a second independent source

is assumed to illuminate from broadside, ϑ = 0◦. Assumed to

be temporally uncorrelated with unit variance, its broadband

steering vector is

a2(z) =
1√
M

[1 1 . . . 1]T , (30)

leading to a non-polynomial space-time covariance matrix

with unity for all entries. With a relative signal strength of 0dB

for each source, additional i.i.d. noise contaminates all sensors

at a variance of -20dB, giving an SINR of -23dB. Therefore

the overall space-time covariance is

R2(z) = R1(z)+
1

M







1 1 . . . 1
...

. . .
...

1 1 . . . 1






+σ2

v I , (31)

with no obvious PEVD as for R1(z) in (29).

The PSS-MUSIC spectrum based on an SBR2-approximation

of the PEVD is shown in Fig. 4, which offers a similar qual-

ity to the AF-MUSIC spectrum scanned for different refer-

ence frequencies in Fig. 5. The degradation of the PSS-MUSIC

spectrum’s surface compared to the AF-approach, particularly

at peak values, is due to the SBR2 algorithm’s approximate

nature.
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Figure 4. PSS-MUSIC spectrum for sources at broadside (ϑ = 0◦) and end–

fire (ϑ = 90◦).
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Figure 5. AF-MUSIC spectrum evaluated over a range of reference frequen-

cies Ω0 for the scenario in Fig. 4.

The spatial-only spectra for the dual source case in Fig. 6

illustrate, that PSC is only able to resolve a single source,

while AF- and PS-MUSIC approaches correctly detect the

sources, with AF offering a higher resolution due to the SBR2-

approximation of the ideal PEVD for the PS-MUSIC case.

6. Conclusions

Three broadband angle of arrival estimation algorithms have

been reviewed and analysed, including a parameterised spa-

tial covariance matrix approach, which by definition can only

resolve the strongest source, an auto-focussing approximation

of the coherent signal subspace method, where the broadband

problem is transformed to yield a narrowband one, and a poly-

nomial MUSIC approach. The algorithms have been cast in

the framework of broadband steering vectors and broadband

space-time covariance matrices, and the links in particular

between the auto-focussing approach and polynomial MUSIC

have been stated, which generally rely on the transition from

a discrete evaluation of frequency bins to a continuous spec-

trum. In simulations, AF- and polynomial MUSIC approaches

have proven very similar, with differences arising from the

iterative approximation of the polynomial EVD. However, a
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Figure 6. PSC compared to PS- and AF-spectra, normalised to unity, for the

dual source case.

natural advantage of the polynomial MUSIC approach is its

potential resolution of both angle of arrival and frequency.
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