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Abstract. Motivated by accurate broadband steering vector requirements for applications such as broadband angle of

arrival estimation, we review fractional delay filter designs. A common feature across these are their rapidly decreasing

performance as the Nyquist rate is approached. We propose a filter bank based approach, which operates standard fractional

delay filters on a series of frequency-shifted subband signals, such that they appear in the filters’ lowpass region. We

demonstrate the appeal of this approach in simulations.

1. Introduction

For broadband array signal processing, the time delays aris-

ing from signal wave fronts travelling across the array at

finite speed cannot be represented by phase shifts as in the

narrowband case but require to be addressed as lags. Since

these delays are normally not integer multiples of the sam-

pling interval, fractional delay filters need to be used [1,2].

With broadband sensor array applications potentially oper-

ating across several octaves, the implementation accuracy of

such fractional delay is crucial to the accuracy of broadband

angle of arrival estimation or the performance of any other

subsequent processing [3].

Fractional delays can be implement by appropriately a sam-

pled sinc function [4,5]. To achieve a finite filter, truncation is

employed to create a discrete prolate spheroidal sequence [6],

which compared to an ideal delay system cause ripple in the

group delay and an increasingly poor approximation with

increasing frequency. This leads to a restricted accuracy of the

fractional delay filter [5], and a limitation of its application to

lowpass-type signals.

To improve the performance of fractional delay filters, tapered

windows instead of rectangular ones have been proposed for

the truncation of the sinc [4,7], which leads to a reduced group

delay ripple. An entirely different approach is based on poly-

nomial approximation was proposed by Farrow [8], which pro-

vides relatively good accuracy at a modest filter order. How-

ever, both windowed sinc and Farrow structure still perform

best at low frequencies, and degrade significantly in higher fre-

quency ranges.

Filter banks have been used in the context of fractional delays

previously, since subband processing can shorten the long

impulse responses found when sampling a sinc off the zero-

crossings [9]. By recognising that most current fractional

delay approaches are reasonably accurate in the low frequency

range and only break down at higher frequencies, in this

paper we proposed to use the filter bank approach to modu-

late undecimated subbands to adopt lowpass characteristics.

After applying accurate fractional delay filters in the lowpass

domain, a frequency shift to the original band and a synthesis

filter bank operation complete our proposed accurate broad-

band fractional delay filter approach.

The paper is organised as follows. Sec. 2. motivates the

requirement of highly accurate fractional delay filters by

reviewing the construction of broadband steering vectors.

Sec. 3. reviews different approaches for designing fractional

delay filters. Thereafter, our proposed filter bank approach is

outlined in Sec. 4.. The complexity of various fractional delay

filter implementation methods is then analysed and compared

in Sec. 5.. Simulation results are provided in Sec. 6. to demon-

strate and compare the accuracy of our proposed approach to

various benchmarks. Conclusions are drawn in Sec. 7..

2. Broadband Steering Vectors

An M-element array of omnidirectional sensors located at posi-

tions rm, m = 1 . . .M collects a signal vector x(t) ∈ CM , with

the continuous time variable t. If a far field source illuminates

the array such that the signal at the origin r = 0 is s(t) and we

neglect attenuation, then

x(t) =











s(t −T1)
s(t −T2)

...

s(t −TM)











=











δ (t −T1)
δ (t −T2)

...

δ (t −TM)











∗ s(t) (1)

with ∗ denoting convolution and delays Tm = 1
c
kTrm,

m = 1 . . .M, where k is the normal vector of the source’s wave

front, and k/c is known as the slowness vector of the source.

Sampling x(t) with a sampling period Ts yields x[n], with dis-

crete time index n such that t = nTs. The assumption is a per-
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fectly bandlimited signal s(t), such that the interpolation func-

tion underlying the sampling process is a sinc. With

x[n] =











δ [n− τ1]
δ [n− τ2]

...

δ [n− τM]











∗ s[n] = a[n]∗ s[n] , (2)

and normalised delays τm = Tm/Ts, the ideal fractional delays

δ [n− τm],

δ [n− τ] =

{

sin(π(n−τ))
π(n−τ) , n 6= τ

1 , n = τ
(3)

are now sinc functions which not necessarily remain sampled

in the sinc’s zero crossing, and therefore generally possess infi-

nite support. The quantity a[n] in (2) is referred to as broad-

band steering, and consists of a number of different fractional

delays of the type in (3).

A signal model for a scenario with L independent far field

broadband sources sl [n], l = 1 . . .L, each characterised by a

broadband steering vector al [n], therefore becomes

x[n] =
L

∑
l=1

∞

∑
ν=0

al [ν]sl [n−ν] + v[n] , (4)

with v[n] representing spatially and temporally uncorrelated

noise with covariance E
{

v[n]vH[n]
}

= σ2
v I. To capture infor-

mation contained in the data vector x[n] requires a space-time

covariance matrix R[ν] = E
{

x[n]xH[n−ν]
}

with lag parame-

ter ν . Its Fourier pair, the cross-spectral density matrix R(z) =

∑ν R[ν]z−ν or short R[ν] ◦—• R(z),

R(z) =
L

∑
l=1

a(z)aH(z−1)Rl(z)+σ2
v I (5)

with Rl(z) the power spectral density of the lth source, forms a

polynomial matrix.

Some broadband array methods directly utilise the broadband

steering vector. In e.g. [3], broadband steering vectors are

used to presteer array data. The parametric covariance matrix

approach in [2,10] presteers the data prior to scanning for

maximised eigenvalues in the resulting covariance matrix. For

the polynomial MUSIC algorithm in [1], a polynomial eigen-

value decomposition [11] of the space-time covariance matrix

in (5) identifies the noise-only subspace, which can then be

scanned using broadband steering vectors, in analogy to the

narrowband MUSIC algorithm [12]. Thus, the accuracy of the

broadband steering vector implementation impacts crucially

on all of these applications.

3. Fractional Delay Filters

Based on the idea fractional delay and an error metric defined

in Sec. 3.1, this section reviews various implementation meth-

ods for fractional delay filters, including windowed sinc func-

tions in Sec. 3.2 and the Farrow structure [8] in Sec. 3.3.

3.1 Ideal Delay and Performance Metric

With ideal fractional delay defined by (3),

fideal[n] = δ [n− τ] , (6)

and the Fourier pair δ [n] ◦—• 1, the Fourier transform of the

fractional delay yields

Fideal(e
jΩ) = 1 · e− jΩτ (7)

with a group delay γideal = τ . Based on this ideal delay, an

error metric for an arbitrary fractional delay filter approxima-

tion f [n] can be defined as

See(e
jΩ) =

∣

∣

∣
Fideal(e

jΩ)−F(e jΩ)
∣

∣

∣

2

, (8)

with F(e jΩ) •—◦ f [n], such that See(e
jΩ) is a quadratic error

type metric for the approximation of fideal[n] by f [n].

3.2 Windowed Sinc Methods

With the ideal fractional delay in (6) possessing infinite sup-

port, in general a window wN [n] and time delay is applied to

create a causal filter of length 2N,

f [n] = fideal[n− τ −N]wN [n− τ −N] . (9)

In the simplest case, a rectangular window wN [n] = pN [n] per-

forms a truncation according to

pN [n] =

{

1 , |n| ≤ N

0 , |n|> N .
(10)

The resulting discrete prolate spheroidal sequence f [n] pro-

vides an approximation of fideal[n] that generally improves

with N at lower frequencies. However, independent from

N, the performance degrades due Gibbs phenomena as the

Nyquist frequency is approached [13].

To enhance the approximation of an ideal fractional delay, a

tapered window can be introduced [4,7], using, for example, a

Hann window

wN,Hann[n] = cos2
( πn

2N

)

pN [n] . (11)

By using such windowing techniques, the ripple in the fre-

quency response can be reduced, lowering the error metric in

(8) at lower frequencies.

3.3 Farrow Structure

The idea of the Farrow structure [8] is based on a polynomial

approximation approach between input samples. Consisting of

M + 1 sections of Lth-order FIR filters Cm(z), m = 0 . . .M,

which provide an interpolation between input samples, Fig. 1

shows the diagram of the Farrow structure. The fractional delay
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Figure 1. Farrow structure with M+1 subsystems of order L approximating

a fractional delay τ between input X(z) and output Y (z).

of the structure is given by the single fractional delay parame-

ter τ , leading to a transfer function

F(z) =
M

∑
m=0

Cm(z)τ
m . (12)

For a given fractional delay τ , F(z) is fixed. The magnitude

response of the Farrow structure is flat at low frequencies

only, thus limiting its applicability to broadband problems that

extend beyond lowpass-type signals.

4. Filter Bank Approach

Exploiting the high accuracy of various fractional delay filters

reviewed in Sec. 3. for lowpass signals, the filter bank based

structure in Fig. 2 is proposed as an implementation framework

for fractional delay filters. In this structure, the input signal is

split into K different frequency bands using an analysis filter

bank with filters Hk(z), k = 1 . . .K. Undecimated, the subband

signals are frequency shifted by Ωk such that the fractional

delay filters are applied to lowpass signals in every branch.

After fractionally delaying the subband signals, the frequency

shifts are reversed, and signal are combined using a suitable

bank of synthesis filters Gk(z).

For memory and computational simplicity, this analysis filter

can be derived from a common lowpass prototype filter by

means of a modulating transform. We here use generalised dis-

crete Fourier transform (GDFT) modulated filter banks, which

offer advantages over other modulations in terms of subband

uniformity and the ability to implement a near-perfect parauni-

tary system, where the synthesis filters Gk(z) can be derived by

time reversal from the analysis filters [14]. The prototype filter

can be designed using a least-squares approach [14], whereby

the reconstruction error of the filter bank is a design criterion

that is optimised. Therefore, depending on the quality of the

prototype filter, and therefore its length and complexity, differ-

ent levels of reconstruction errors can be achieved for the filter

bank.

The characteristic of a sample filter bank with K = 16 subbands

is shown in Fig. 3. The bandpass nature of the subband signals

motivates the modulation by

Ωk =
(2k− 1)π

K
k ∈ Z, k = 1 · · ·K , (13)

which translates every subband in frequency to sit symmetri-

cally around Ω = 0.

x[n] y[n]+

hK [n]

h2[n]

h1[n]

...

×

×

ejΩ1n

ejΩ2n

ejΩKn

...

× f [n]

f [n]

f [n]

...

e−jΩ1n

e−jΩ2n

e−jΩKn

...

×

×

×

g1[n]

g2[n]

gK [n]

...

Figure 2. Proposed subband-based fractional delay filter with analysis filter

bank stage with analysis filters hk [n] ◦—• Hk(z), a modulation stage, the frac-

tional delay filters f [n], a demodulation stage, followed by a synthesis filter

bank with synthesis filters gk[n] ◦—• Gk(z).
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Figure 3. Characteristic of the lower K/2 analysis filters Hk(e
jΩ) •—◦ hk[n]

of a K channel filter bank.

5. Complexity Considerations

Before assessing and comparing the accuracy of various frac-

tional delay filter methods discuss in Sec. 3., this section will

analyse the computational complexity of these approaches.

The straightforward windowed sinc function requires

Cwindow = 2N (14)

multiply accumulates (MACs), which is independent of the

particular window function such as Hann or a rectangular win-

dow, as the coefficients can be saves readily multiplied onto

sinc values. The Farrow structure with its polynomial order M

and filter length L consumes

CFarrow = L(M + 1)+M (15)

MACs per sampling period, which can be substantial if L ≈ N.

Finally, the computational complexity for the filter bank

approach in its most efficient implementation based on a mod-

ulated filter bank in polyphase implementation [15], which

requires

CFB = 2Lp + 4K log2 K , (16)

per filter bank and sampling period. In (16), Lp is the order of

filter bank’s prototype filter and K is the number of subbands.

For the proposed approach, 2 filter bank operations and a total

of K fractional delay filter implementations according to Fig. 2

therefore lead to

Cproposed = 2CFB +K ·C , (17)
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Figure 4. Approximation error See(e
jΩ) maximised over fractional delay τ ,

and dependent on normalised angular frequency Ω.

whereby C takes on the value in (14) or (15), depending on

which fractional delay scheme is integrated into the proposed

architecture.

Considering (14), (15) and (17), it is clear that the filter bank

based approach is significantly less expensive compared to a

direct implementation. Therefore, the performance analysis in

Sec. 6. will have to demonstrate if the computational cost that

needs to be afforded for the proposed approach is worthwhile.

6. Simulations and Numerical Results

For the windowed approaches, Fig. 4 provides some prelim-

inary results on the maximisation of the error See(e
jΩ) over

the fractional delay as a variable. The rectangular window per-

formes worst, and improvements can be made at no arising

cost through the use of tapered windows. As an alternative to

the Hann window, we also show a Hamming window, which,

however performs slightly worse than its competitor.

The approximation error for a truncated sinc function with

N = 100 is shown in Fig. 5, where a maximum error is reached

for a fractional delay of τ = 1
2

and frequencies approaching

the Nyquist rate. The degradation towards the Nyquist rate is

shared by the Hann-windowed sinc function in Fig. 6, also

with window N = 100, and a Farrow structure with polynomial

order M = 3 in Fig. 7. While the Farrow structure for a low

polynomial degree does not perform well for higher frequen-

cies, it significantly exceeds both the rectangular and Hann-

windowed sinc approach, whereby the Hann-window offers

advantages over the rectangular window at almost no cost.

To quantitatively assess the performance of the above frac-

tional delay filters, we defined two approximation errors. A

first error represents the average deviation from an ideal delay

over the entire band,

σ2
full =

1

π

π
∫

0

See(e
jΩ) dΩ , (18)
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Figure 5. Approximation error for truncated sinc function with N = 100.
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Figure 6. Approximation error for Hann windowed sinc function with

N = 100.

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5
−140

−120

−100

−80

−60

−40

−20

0

τ
Ω/π

1
0

lo
g

1
0

S
ee
(e

jΩ
)/
[d

B
]

Figure 7. Approximation error for Farrow structure for M = 3.

while a second error removes the highest octave — where

according to Figs. 5 –7 the approximation is least accurate —

to calculate

σ2
half =

2

π

π/2
∫

0

See(e
jΩ) dΩ (19)

over the lower half of the spectrum only. The resulting mea-

sure for the windowed sinc function and the Farrow structure

are shown in Fig. 8. This provides a clear indication that a
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Figure 8. Error performance versus complexity for various fractional delay

filter approaches.

restriction to lowpass signals provides accurate results, partic-

ularly for the Hann window, while state-of-the-art methods are

unsuitable when applied over the entire Nyquist band.

For the proposed filter bank approach to a fractional delay

implementation, Fig. 9 shows the combination of a K = 16

channel filter bank with an M = 3 order Farrow structure to

implement the fractional delay in the frequency-shifted sub-

bands. As the results in Fig. 9, the error is uniformly low with

a maximum error See(e
jΩ) of -55dB across all frequencies Ω

and fractional delays τ . Here, See(e
jΩ) consists of two contri-

butions — (i) an error due to inaccuracies on the Farrow struc-

ture, and (ii) a reconstruction error within the filter bank. Here,

with a reconstruction error of -55dB [14], the latter dominates.

This is underlined by the same error of -55dB that is obtained

in combination with a Hann windowed sinc function, and a

Farrow structure of order M = 9. In contrast, embedding the

sinc function characterised in Fig. 5 into the subbands yields

an approximation error of approximately -37dB; i.e. for this

case, the fractional delay filter is sufficiently crude to dominate

the overall error of the system. This is also supported by the

approximation error σ2
full in (18), which is summarised for the

various fractional delay filter methods in Tab. 1. The fractional

delay filter methods using the rectangularly truncated sinc is

given a length of equivalent complexity to the displayed filter

bank based methods.

Since the undecimated filter bank approach is costly in terms

of computations, the filter bank can design such that it is just

sufficiently good to match the desired approximation error for

the fractional delay filter f [n]. This ensures that the system is

not over-designed, and that the cost of the filter bank can be

kept as low as possible.
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Figure 9. Approximation error for filter bank approach with with K = 16,

and an L = 3 order Farrow filter as subband fractional delay f [n].

method σ2
full/[dB]

sinc -21.1

Farrow, L = 9 -0.5

fiba & sinc -38.0

fiba & Hann -55.3

fiba & Farrow M = 3 -55.5

fiba & Farrow M = 9 -55.8
Table 1. Table of average errors over entire Nyquist band for different frac-

tional delay filter implementations. The filter band (fiba) methods use a K = 16

channel filter bank with a reconstruction error of approx -56dB. .

7. Conclusions

The need for accurate broadband steering vectors for applica-

tions such as broadband angle of arrival estimation has moti-

vated the implementation of fractional delay filters that can

approach the ideal fractional delay over a large bandwidth.

Since state-of-the-art fractional delays such as windowed sinc

and Farrow filters perform best at low frequencies, we have

combined these filters with a modified filter bank, whereby

undecimated subband signals are modulated such that only a

small lowpass region is active in each subband. These can then

be accurately delayed by any of the established methods.

Simulations indicate that accuracy can be achieved across the

entire bandwidth, and that the approximation error w.r.t. an

ideal delay is either limited by the fractional delay filter or the

reconstruction error of the filter bank. The final paper will pro-

vide additional details on the complexity, and the trade-off and

optimal selection of the filter bank.
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