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When a group of satellites is equipped with a particulary simple propul-

sion system, e.g. cold-gas thrusters, constraints on the thrust level and total

propellant mass renders cluster-keeping extremely challenging. This is even

more pronounced in disaggregated space architectures, in which a satellite

is formed by clustering a number of heterogenous, free-flying modules. The

research described in this paper develops guidance laws aimed at keeping

the relative distances between the cluster modules bounded for long mission

lifetimes, typically more than a year, while utilizing constant-magnitude

low-thrust, with a characteristic on-off profile. A cooperative guidance law

capable of cluster establishment and maintenance under realistic environ-

mental perturbations is developed. The guidance law is optimized for fuel

consumption, subject to relative distance constraints. Some of the solutions

found to the optimal guidance problem require only a single maneuver arc

to keep the cluster within relatively close distances for an entire year.
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Nomenclature

a = semimajor axis

Dmin = inter-module distance lower bound

Dmax = inter-module distance upper bound

dij = distance between modules i and j

e = eccentricity

f = true anomaly

H = Hamiltonian

i = inclination

m = mass

r = inertial position vector

R = covariance matrix

R = rotation matrix

Rq = Earth’s equatorial radius

Sγ = switching function of the intentional mass disposal parameter

Sσ = switching function of the throttle parameter

T = thrust vector in inertial coordinates

t = time

ti = initial maneuver time

tf = final maneuver time

Tn = nominal thrust value

v = inertial velocity vector

α = right ascension of T

γ = intentional mass disposal regulation parameter

Γ = vector of orbital elements

δ = declination of T

∆t = time interval

∆Ω = differential Ω

λ = Lagrange coefficient

ρ = density

σ = throttle parameter

Ω = right ascension of the ascending node

ω = argument of perigee

(·)k = parameter (·) corresponding to module k
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I. Introduction

Disaggregated space architectures (DSA) constitute an emerging concept in the realm of

distributed space systems. The main idea is to replace monolithic satellites by multiple free-

flying, physically-separated modules interacting through wireless cross-links. These disag-

gregated satellite modules (DSM) can be heterogeneous, having one or more pre-determined

functions, e.g. navigation, attitude control, power generation and payload operation. DSA

enable extended spacecraft operability; for instance, a failed DSM can be replaced, whereas

in a monolithic satellite a failed subsystem might cause premature mission termination.

Unlike satellite formation flying missions, the DSM do not have to operate in a tightly-

controlled formation; instead, they are required to maintain the inter-module distances

bounded (typically between 100m and 100 km) for the entire mission lifetime. This con-

cept is termed cluster flight. Some of the main ideas which DSA rely upon were formally

introduced by Brown and Eremenko [1]. Later works discussed the advantages and disad-

vantages of DSA compared to conventional architectures [2].

Cluster flight is challenging, because without control forces initially-close DSM will tend

to drift apart due to differential accelerations. Since the total propellant on each DSM is

strictly limited, and the propulsion system is of limited efficiency (e.g. cold-gas), keeping a

cluster of DSM in prescribed maximum and minimum distances while maintaining at least

one of the DSM (e.g., the payload module) on a given reference orbit becomes a challenging

problem. This problem couples high-fidelity astrodynamical modeling, guidance, and orbit

control.

If Keplerian dynamics are assumed, equal semimajor axes guarantee periodic relative

motion [3]. However, in realistic scenarios the problem is much more complicated. The

most significant perturbations affecting low Earth-orbit satellites are the Earth oblateness

and drag. Many works presented strategies for mitigating the relative drifts among satellites

subject to the main perturbations. Constraints leading to J2 secular effect mitigation and

concomitant optimal multi-impulsive maneuvers for spacecraft formation flying were pre-
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viously proposed [4–9]. An extension of perturbation mitigation for the problem of cluster

flight was recently developed [10], wherein constraints on the relative states, as well as an im-

pulsive cluster-keeping algorithm leading to bounded motion in presence of zonal harmonics

and drag, were developed.

Impulsive velocity changes, while frequently providing useful approximations, do not

represent realistic maneuvers, which are continuous processes. In this context, several works

dealt with time-continuous maneuvers for distributed space systems. Most of these works

derived control laws with a continuously-variable thrust magnitude [11–13].

Cold-gas propulsion systems are useful for disaggregated spacecraft due to simplicity

and low cost. However, a significant drawback is that the magnitude of the exerted thrust

cannot be easily regulated. This feature leads to control profiles known as on-off. Attempts

at finding optimal trajectories for satellites, while assuming constant thrust levels, were

previously made [14, 15]. If the problem is well formulated, optimization theory can lead to

cooperative optimal guidance laws for a cluster of DSM. It is desirable to design cooperative

maneuvers since they tend to minimize the global propellant consumption while balancing

the consumed propellant among the satellites.

A critical fact to consider concerns the ballistic coefficients of the DSM. In the presence of

drag, differences in ballistic coefficients may cause rapid drift among the DSM. Consequently,

any cluster-keeping strategy should consider balancing the ballistic coefficients after any

maneuver. This led to the idea of intentional mass disposal [10].

In this paper, an optimal control approach is developed that leads to cooperative propellant-

optimal guidance laws steering a cluster of DSM from given initial conditions to terminal

conditions, which mitigate the relative drifts while keeping the ballistic coefficients balanced.

The DSM are assumed to have the same cross-sectional area and drag coefficient. Therefore,

to keep the ballistic coefficients equal, the developed maneuvers aim to match the masses

at the end of each maneuver. Since the thrust magnitude is constant, on-off maneuvers are

designed. The proposed guidance law can keep a cluster of DSM in a bounded configuration

for very long time scales – possibly for the entire mission – and is hence quite different from
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similar works dedicated to spacecraft formation flying.

II. Strategy for Cluster Flight

Consider a cluster of N modules, DSMk, k = 1 . . . N . At any time t, it is required to

hold the inter-module distances dij(t) (i, j = 1, 2, . . . , N, i ̸= j) between lower and upper

bounds, Dmin and Dmax, respectively:

Dmin ≤ dij(t) = ∥ri(t)− rj(t)∥ ≤ Dmax (1)

where ri and rj denote the position vectors of DSMi and DSMj, respectively, in an inertial

reference frame. Generally speaking, the upper bound Dmax is related to the communication

cross-links between the DSM, while the lower bound Dmin is imposed for collision avoidance.

Considering possible mission specifications, additional constraints may be posed on the

orbit of the payload module, by requiring, for example,

amin ≤ a1(t) ≤ amax, emin ≤ e1(t) ≤ emax, imin ≤ i1(t) ≤ imax (2)

where a denotes the semimajor axis, e is the eccentricity, and i is the inclination. The sub-

index (·)1 denotes the orbital element (·) referred to the payload, and the sub-indices (·)min

and (·)max denote lower and upper bounds respectively, for the orbital element (·). Notice

that in this formulation the orbital elements a1(t), e1(t), and i1(t) are osculating elements.

Therefore, the upper and lower bounds should be set such that they account for the natural

oscillations of the elements, and such that Eq. (2) is inline with mission specifications.

This work proposes a general strategy for cluster establishment and cluster-keeping, which

consists of performing a cooperative establishment maneuver at the beginning of the mission,

and then performing further cooperative re-establishment maneuvers at any later time upon

necessity. By necessity it is meant that, at time t, the constraints Eq. (1) or Eq. (2) are

violated. The flowchart in Fig. 1 illustrates the idea. In this figure, tend-mission denotes the
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Figure 1. Flow chart of the global cluster-keeping scheme.

final time of the entire mission.

In light of the aforementioned strategy, it is important that each establishment (or re-

establishment) maneuver steers the system to a set of states that enable the system to remain

as long as possible within the given constraints, so as to reduce the number of maneuvers

required during the mission lifetime.

The states attained at the end of each cooperative maneuver are referred to as termi-

nal states. The main goal of this work is to derive an optimal guidance method yielding

cooperative maneuvers aimed at reaching specific terminal states, which satisfy constraints

that enable a cluster of a given number of DSM to (i) hold the inter-module distances be-

tween given bounds for long time intervals, and (ii) track a given reference orbit (at least

one module) up to some prescribed accuracy. These maneuvers must be optimal in terms

of the consumed propellant, and enable the cluster to coast for long time intervals without

corrective maneuvers.
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Consequently, the next step is to formulate the said problem as an optimal guidance

problem.

III. Optimal Guidance Problem Formulation

A. Bounded-Motion Constraints

In Ref. [10], constraints on the relative states of the satellites were found, for which the

resulting inter-module distance is lower- and upper-bounded. Expressions for these bounds

were provided. The perturbations for which the constraints were developed included zonal

harmonics and drag, assuming that the distribution of density is time-invariant and sym-

metric with respect to the Earth’s polar axis. Another assumption was that the ballistic

coefficients of the modules are equal and time-invariant. In case of N modules, this is stated

as

CDk
Sk

mk

=
CDl

Sl

ml

= const. k, l = 1, . . . , N (3)

where CDk
, mk, and Sk denote the respective drag coefficient, mass, and cross-sectional area

(normal to the velocity direction) of DSMk.

Define an Earth-centered inertial (ECI) frame, with the fundamental plane lying on

the equatorial plane, the x̂ axis pointing towards the mean vernal equinox of epoch, the ẑ

axis pointing towards the mean rotational axis of epoch, and ŷ , ẑ × x̂. In this frame,

rk , [xk yk zk]
⊤ and vk = [vxk vyk vzk]

⊤ , [ẋk ẏk żk]
⊤ denote the respective position and

velocity vectors of DSMk. Define

Γk , [ak, ek, ik, ωk, fk, Ωk]
⊤ (4)

where ak is the semi-major axis, ek is the eccentricity, ik is the inclination, ωk is the argument

of perigee, fk is the true anomaly, and Ωk denotes the right ascension of the ascending node

(RAAN), all corresponding to DSMk, with k = 1, . . . , N . If, at a given time t = t∗, the state

vector of DSMk is such that
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(a) Schematic view of the orbit geometry.
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(b) Schematic view of the constraints in Eqs. (5).

Figure 2. Final constraints on the relative states.

Γk(t
∗) = Γ1 (t

∗ +∆t1k) +

 05×1

∆Ω1k

 , k = 2, 3, . . . , N (5)

where ∆t1k denotes a shift in time and ∆Ω1k represents a shift in the RAAN, then the

distance between DSM1 and DSMk, denoted by d1k(t), is bounded by [10]

2 ηmin sin

(
|∆Ω1k|

2

)
− Vmax |∆t1k| ≤ d1k (t) ≤ Vmax |∆t1k|+ 2 ηmax sin

(
|∆Ω1k|

2

)
∀t ≥ t∗, k = 2, 3 . . . , N

(6)

∆t1k and ∆Ω1k are both user-defined parameters. In addition, Vmax , max
t

∥v1(t)∥,

η1(t) ,
√
x1(t)2 + y1(t)2 (7)

and ηmax , max
t

η1(t), ηmin , min
t

η1(t).

Fig. 2 illustrates the relative geometries generated by Eq. (5). Moreover, if

Γl(t
∗) = Γ1 (t

∗ +∆t1l) +

05×1

∆Ω1l

 , l ̸= k (8)
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then the distance between DSMk and DSMl, denoted by dkl(t), satisfies

2 ηmin sin

(
|∆Ωkl|

2

)
− Vmax |∆tkl| ≤ dkl (t) ≤ Vmax |∆tkl|+ 2 ηmax sin

(
|∆Ωkl|

2

)
∀t ≥ t∗, l ̸= k (9)

where ∆Ωkl , ∆Ω1l −∆Ω1k and ∆tkl , ∆t1l −∆t1k.

To accurately determine the values of the bounds (6) and (9) one should compute Vmax,

ηmax, and ηmin, which means that the orbit of DSM1 in Eqs. (6) should be known.

For full astrodynamical models the obtained theoretical bounds are not strictly valid. It

may happen that at a certain time t the distance between the modules exceeds the established

bounds. However, in real missions, the advantage of using Eq. (5) is that these conditions can

significantly mitigate the relative drift between the DSM, even in a real space environment,

as shown in Ref. [10]. Hence, the guidance law developed herein pursues to achieve these

constraints.

B. Thruster Configuration

It is assumed that the DSM are equipped with four identical thrusters, and that the thrust

magnitude is constant, i.e. the operation profile for each thruster is on-off. Real thrusters

are usually characterized by misalignment, timing errors and magnitude uncertainty. How-

ever, to formulate a design model, these errors are neglected. In order to cope with the

aforementioned undesired errors and uncertainties, closed-loop control strategies should be

used. A further discussion of this subject is provided in the sequel.

The array of engines is comprised of two pairs of opposite thrusters. The axes of the

two pairs are orthogonal (see Fig. 3(a))1. In a body frame B, which axes are aligned with

the thruster axes, the direction of thrust generated by the mth thruster, denoted by bB
i , i =

1The same approach could be implemented for three orthogonal pairs of opposite thrusters. However, in
small-satellite missions, two pairs may be sufficient for orbit keeping.
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1, 2, 3, 4 , is given by the following vectors:

bB
1 ,


1

0

0

 bB
2 ,


−1

0

0

 bB
3 ,


0

1

0

 bB
4 ,


0

−1

0

 (10)

When a thruster is activated, it exerts a thrust of constant nominal magnitude Tn. Thus,

the thrust vector in body axes is given by

TB = Tn


κ1 − κ2

κ3 − κ4

0

 (11)

where κm ∈ {0, 1}. If κm(t) = 1, then at time t the mth thruster is being fired, whereas if

κm(t) = 0 then at time t the mth thruster is off. The mass flow rate of the kth satellite, ṁk,

is given by

ṁk = − Tn

Isp g0

4∑
m=1

κmk
(12)

where Isp is the specific impulse and g0 is the standard gravity acceleration at sea level.

This configuration allows for zero-thrust mass consumption, which may be necessary

for balancing the ballistic coefficients as previously mentioned. Whether it is necessary to

intentionally dispose mass or not will be determined by the dynamic optimization procedure.

C. Fictitious Dual-Engine Configuration

In order to facilitate the formulation of the optimization problem, the physical configuration

of the engines, given by Eqs. (11) and (12), is replaced by a fictitious dual-engine config-

uration, as illustrated in Fig. 3(b). This configuration consists of two engines labeled E1

and E2. E1 is used for controlling the orbital motion, exerting the required thrust while

consuming propellant; at most, a single thruster per pair is allowed to work. On the other
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(a) Thruster configuration. (b) Fictitious dual-engine configuration.

Figure 3. Thruster configuration.

hand, E2 is used to burn fuel and to control the intentional mass disposal without exerting

thrust, meaning that both thrusters in a pair are fired simultaneously.

For each DSM, it is possible to define several thrusting modes. Table 1 details the

maximum level of effective thrust available, the concomitant mass consumption, and the

maximum available level of intentional mass disposal for 5 possible operation modes. In

Table 1, Tk stands for the thrust level for engine E1 (orbital motion control), Ck represents

its corresponding mass consumption, and Dk represents the mass disposal of engine E2. The

total mass consumption is given by the following relationship:

ṁk = −σk
Ck

Isp g0
− γk

Dk

Isp g0
(13)

where σk represents the throttle parameter that must be either 0 or 1, and γk is a parameter

regulating the intentional mass disposal of DSMk, which must be either 0 or 1.

In Mode I, one thruster for each pair is on duty, with no intentional mass disposal. In

contrast, when Modes II and III are selected, no effective thrust is possible, because either

none of the thrusters are active or both of them are working simultaneously. Mode IV
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Table 1. Spacecraft thrusting modes.

Mode Description Tk Ck Dk

I Two orthogonal thrusters,
√
2 Tn 2 Tn 0

one per pair, can be simultaneously

fired

II Both thrusters of one pair 0 0 2 Tn

can be simultaneously fired

III Both thrusters of both pairs 0 0 4 Tn

can be simultaneously fired

IV One thruster of one pair can be fired, Tn Tn 2 Tn

and/or both thrusters (simultaneously)

of the other pair can be fired

V One thruster of one pair Tn Tn 0

can be fired

represents a hybrid configuration in which both orbital control and intentional mass disposal

are used. In the present paper, Mode IV is pre-selected for all the satellites. Finally, in Mode

V a single thruster is allowed to exert thrust, but no intentional mass disposal is possible.

For engine E1, a spherical-coordinate representation of the thrust vector is adopted with

respect to the ECI frame, so that

Tk = σk Tk [cos(αk) cos(δk), sin(αk) cos(δk), sin(δk)]
⊤ (14)

where αk and δk denote the right ascension and declination angles respectively, all corre-

sponding to DSMk.
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D. Design Model

The dynamical model used for solving the optimization problem stated in the next sections

is given by

ṙk = vk (15a)

v̇k = −µ
rk

∥rk∥3
−

µJ2 R
2
q

2 ∥rk∥5

6


0

0

zk

+

[
3− 15

(
zk

∥rk∥

)2
]
rk

− ρ ∥vk∥
S CD

2mk
vk +

Tk

mk
(15b)

ṁk = −σk
Ck

Isp g0
− γk

Dk

Isp g0
(15c)

wheremk denotes the instantaneous mass of DSMk. This model includes Keplerian dynamics

perturbed by J2, (the first term of the zonal harmonics potential), drag and thrust. In

Eqs. (15) the density ρ is assumed constant. However, this assumption will be removed later

on, and the performance will be evaluated using high-fidelity simulations. The variable µ

denotes the gravitational parameter.

E. Optimal Guidance Problem

Define the state vector of each DSM, at time t, as

yk(t) = [xk(t), yk(t), zk(t), vxk(t), vyk(t), vzk(t), mk(t)]
⊤ (16)

The optimal guidance problem can now be explicitly formulated: Assume that the initial

conditions at t = ti are yk(ti), k = 1, 2, . . . N . Define the cost functional

J =

∫ tf

ti

N∑
k=1

(σk Ck + γk Dk) dt (17)

which represents the total mass consumption (up to scaling by the constant term Isp g0).

Recall that αk and δk are the steering angles of the thrust vector Tk, and that σk and

γk are the throttle parameters related to the control thrust and the intentional mass dis-

posal, respectively. Derive a cooperative guidance law, determined by the control parameters
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{σk(t), γk(t); αk(t), δk(t)}, k = 1, 2, . . . , N , that steers the cluster of DSM from yk(ti) to

the terminal states yk(tf ), such that J is minimized, and the following equality constraints

are satisfied:

a1(tf ) = − µ ∥r1(tf )∥
∥v1(tf )∥2 ∥r1(tf )∥ − 2µ

= aD (18a)

e1(tf ) =

√
1 +

∥r1(tf )× v1(tf )∥2

µ2 ∥r1(tf )∥
(
∥v1(tf )∥2 ∥r1(tf )∥ − 2µ

)
= eD (18b)

i1(tf ) = arccos

(
x1(tf ) vy1(tf )− y1(tf ) vx1(tf )

∥r1(tf )× v1(tf )∥

)
= iD (18c)

rk(tf ) =R(∆Ω1k)

[
r1(tf ) + v1(tf )∆t1l −

µ

2

r1(tf )

∥r1(tf )∥3
∆t21k

]
k = 2, 3, . . . , N

vk(tf ) =R(∆Ω1k)

[
v1(tf )− µ

r1(tf )

∥r1(tf )∥3
∆t1k

]
k = 2, 3, . . . , N

(19)

and

mk(tf ) = m1(tf ) k = 2, 3, . . . , N (20)

where, recalling Eq. (2),

aD , amax + amin

2
, eD , emax + emin

2
, iD , imax + imin

2
(21)

and R(∆Ω1k) is given by

R(∆Ω1k) ,


cos (∆Ω1k) − sin (∆Ω1k) 0

sin (∆Ω1k) cos (∆Ω1k) 0

0 0 1

 k = 2, 3, . . . , N (22)

Eqs. (18) require DSM1 to track a reference orbit. These terminal constraints allow the pay-

load to track a specific orbit during the post-maneuver coasting arc, so as to satisfy possible

mission requirements, until Eq. (2) is violated. On the other hand, Eqs. (19) represent an

approximation of the constraints given by Eq. (5). In light of the discussion presented in
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Section A, it is desirable to guide the DSM to states satisfying Eq. (5). However, to strictly

apply constraints (5), one should forward integrate the real trajectory of DSM1, from t = tf

to t = tf + ∆t. However, in order to be able to formulate and solve the optimal guidance

problem, the integration is replaced by Eqs. (19), which assume that during the interval of

time from t = tf to t = tf +∆t, DSM1 follows a trajectory arc with a constant acceleration

given by −µ r1(tf )/ ∥r1(tf )∥3. For ∆t of a few seconds, as used in this work, this represents

a good approximation, as will be seen in a numerical example of Section VI. The purpose

of imposing the constraints (19) is to achieve a slow relative post-maneuver drift. Finally,

the constraints (20) lead to the equalities of the post-maneuver masses. Since it was as-

sumed that the cross-sectional areas as well as the drag coefficients were equal for all the

DSM, matching the post-maneuver masses (and ballistic coefficients) is intended to reduce

differential drag effects.

IV. Guidance Law Derivation

In this section, the optimal guidance problem is solved while relying on indirect dynamic

optimization.

A. The Hamiltonian and Co-States

According to optimal control theory [16,17], the Hamiltonian of the problem is defined as

H =
N∑
k=1

Hk (23)

where

Hk = σkCk + γkDk + λrk
T vk + λvk

T v̇k − λmk

(
σk

Ck

Isp g0
+ γk

Dk

Isp g0

)
(24)

λrk , λvk
, and λmk

are the co-states corresponding to rk, vk and mk, respectively.
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The dynamics of the co-states are given by

λ̇rk = −
[
∂H
∂rk

]⊤
λ̇vk = −

[
∂H
∂vk

]⊤
λ̇mk

= − ∂H
∂mk

(25)

Hk can be re-written as Hk = Ĥk + H̄k, where Ĥk denotes the sum of the terms depending

explicitly on the control variables {σk, αk, δk, γk}, k = 1, 2, . . . , N , and H̄k denotes the

remaining terms. Introducing the corresponding expressions for v̇k from Eqs. (15) and

defining λvk
, [λvxk

, λvyk , λvzk ]
⊤ yield the following expression:

Ĥk = σk

(
Ck +

Tk

mk

[λvxk
cos(αk) cos(δk) + λvyk sin(αk) cos(δk) + λvzk sin(δk)]− λmk

Ck

Isp g0

)
+γk

(
Dk − λmk

Dk

Isp g0

)
(26)

Recalling Eq. (23), for each k, k = 1, 2, . . . N , Eq. (26) will be utilized to minimize the

total Hamiltonian H, with respect to {σk, γk; αk, δk}. As proven in Appendix A, the global

minimum of Ĥk is found either at


α1∗
k =arctan

(
λvyk

λvxk

)
δ1∗k =arctan

(
λvzk

λvxk
cosα1∗

k + λvyk sinα
1∗
k

) (27)

or at 
α2∗
k = α1∗

k + π

δ2∗k = −δ1∗k

(28)

The expression

H̃k , [λvxk
cos(αk) cos(δk) + λvyk sin(αk) cos(δk) + λvzk sin(δk)] (29)
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is computed at both solution candidates given by Eqs. (27) and (28); the candidate that

yields the smallest H̃k yields the optimal set {α∗
k, δ∗k}. If λvxk

= λvyk = 0 for some t, then

αk is undefined and δk = −sign(λvzk)π/2.

Now, define the switching functions Sσk
as

Sσk
,
(
Ck +

Tk

mk

[λvxk
cos(αk) cos(δk) + λvyk sin(αk) cos(δk) + λvzk sin(δk)]− λmk

Ck

Isp g0

)
(30)

The optimal value of σk is given by

σ∗
k =


1, if Sσk

< 0,

0, if Sσk
≥ 0

(31)

Similarly, define the switching functions Sγk as

Sγk , Dk − λmk

Dk

Isp g0
(32)

so the optimal value of γk is given by

γ∗
k =


1, if Sγk < 0,

0, if Sγk ≥ 0

(33)

Finally, {σ∗
k, γ

∗
k ; α

∗
k, δ

∗
k} is the argument that globally minimizes Hk, and therefore the total

H. A proof of this statement is found in Appendix A.

In order to obtain the terminal constraints for the co-states, Eqs. (18)-(20) are used to
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define a function Φ as

Φ = + νa

(
− µ ∥r1(tf )∥
∥v1(tf )∥2 ∥r1(tf )∥ − 2µ

− aD

)

+ νe

√1 +
∥r1(tf )× v1(tf )∥2

µ2 ∥r1(tf )∥
(
∥v1(tf )∥2 ∥r1(tf )∥ − 2µ

)
− eD


+ νi

(
arccos

(
x1(tf ) vy1(tf )− y1(tf ) vx1(tf )

∥r1(tf )× v1(tf )∥

)
− iD

)

+
N∑
k=2

[
[ν1k, ν2k, ν3k]

(
rk(tf )−R(∆Ω1k)

[
r1(tf ) + v1(tf )∆t1k −

µ

2

r1(tf )

∥r1(tf )∥3
∆t21k

])

+ [ν4k, ν5k, ν6k]

(
vk(tf )−R(∆Ω1k)

[
v1(tf )− µ

r1(tf )

∥r1(tf )∥3
∆t1k

])

+ ν7k (mk(tf )−m1(tf ))

]
(34)

where νa, νe, νi, and νlk, l = 1, 2, . . . , 7 are all constants to be determined. Then, applying

the transversality conditions, it follows that

λrk(tf ) =

[
∂Φ

∂rk(tf )

]⊤
λvk

(tf ) =

[
∂Φ

∂vk(tf )

]⊤
λmk

(tf ) =

[
∂Φ

∂mk(tf )

]⊤
(35)

B. The Two-Point Boundary Value Problem

Eqs. (15) and (25) constitute a set of 14N ordinary differential equations, whose boundary

conditions are given by yk(ti) and Eqs. (35). Along with the set of unknowns νa, νe, νi, νml

(m = 1, 2, . . . , 7 and k = l, 3, . . . , N) and the terminal constraints Eqs. (18), Eqs. (19), and

Eq. (20), this two-point boundary value problem is highly nonlinear and thus should be

solved numerically.

To that end, a MATLABr routine called bvp4c, which is based on collocation methods, is
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utilized. However, due to the discontinuous behavior of σk and γk, it is not possible to obtain

a solution from the numerical solver, as it is designed for continuous dynamical systems. In

order to implement the binary control laws for σk and γk as smooth functions, amenable for

the numerical processing, Eq. (31) is replaced by

σk = −arctan(qσ Sσk
) + π/2

π
+ 1 (36)

and Eq. (33) by

γk = −arctan(qγ Sγk) + π/2

π
+ 1 (37)

where qσ and qγ are parameters utilized to perform a continuation process to numerically

solve the two-point boundary value problem. As qσ −→ ∞, Eq. (36) tends to the corre-

sponding binary function, in the same manner as Eq. (37) does for qγ −→ ∞. The numerical

solver bvp4c relies on initial guesses for the whole solution. Hence, to obtain a good initial

guess, it is necessary to start with low values (order of magnitude of 1) for qσ and qγ, and

then the obtained solution is used as the initial guess for the next run, where qσ and qγ are

both increased by an order of magnitude. The process is iteratively continued until high

enough values of qσ and qγ are reached, such that the obtained thrust profile is on-off. At

orders of magnitude of 104 for qσ and qγ, the thrust profile is already perceived as an on-off

profile.

C. Closed-Loop Implementation

The guidance law resulting from solving the two-point boundary value problem presented

in Section IV.B constitutes an open-loop control law. For every set of initial states Y(ti) ,[
y1(ti)

⊤, . . . ,yN(ti)
⊤]⊤ and a given terminal time tf , the solution of the two-point boundary

value problem is the optimal guidance command vector given as a function of time:

u(t;Y(ti), tf ) , (σ∗
k(t), γ

∗
k(t); α

∗
k(t), δ

∗
k(t)) , ∀ t ∈ [ti, tf ] (38)
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In real scenarios there exist astrodynamical forces that have not been considered in the

design model given in Eq. (15). Moreover, other source of errors, namely thruster misalign-

ment, timing and magnitude, are inherent to the propulsion system. Hence, if the cluster

is steered while implementing the guidance law (38), it is expected that at the end of the

maneuver the actual terminal states will be different from those attained with the design

model. Consequently, the constraints (19) would not be strictly satisfied. On the other hand,

the constraints (20) will be satisfied as long as the thrusters are exactly fired according to

σ∗
k(t) and γ∗

k(t), with the given design thrust level and given Isp. The aforementioned factors

may affect the long-term performance of the establishment maneuvers.

Consequently, under model uncertainty, guidance laws should be implemented in closed-

loop formulations. In other words, it is desired to compute the control commands as functions

of the actual state rather than as functions of time, so that the guidance system is capable

of coping with unmodeled perturbations.

The guidance law u(t;Y(ti), tf ) derived for a given set of initial conditions Y(ti) and a

terminal time tf can be implemented in closed-loop by recomputing, at any time t = τ , a

new guidance law

u(t;Y(τ), tf − τ), ∀ t ∈ [τ, tf ] (39)

The frequency at which it is recomputed depends on the computational capabilities of the

system.

When a maneuver is recomputed, the utilized inputs are estimates of the states. These

estimates introduce errors with respect to the ideal values. In this work, every time the

maneuver is recomputed, measurement errors are modeled and added to the real states,

representing measured states. Hence, the state input Ŷ(τ) used for recomputing the guidance

law is given by

Ŷ(τ) = Y(τ) + υ (40)

where υ denotes the observation noise, assumed to be zero-mean multivariate Gaussian white
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noise, with covariance R,

R = IN ⊗

diag(σ2
r , σ

2
v)⊗ I3 06×1

01×6 σ2
m

 (41)

where ⊗ represents the Kronecker product.

Finally, the guidance law is recomputed as

u(t; Ŷ(τ), tf − τ) (42)

V. Post-Maneuver Dynamics: Selecting ∆t1k and ∆Ω1k

After each cooperative maneuver, the evolution of dij(t) can have either an increasing

secular mode or a decreasing one, as can be seen in Fig. ??. Since the distances dij(tf ) are

usually rather small, a secularly increasing distance is preferable over a decreasing one, as

the latter may entail a collision avoidance maneuver. The post-maneuver distance evolution

depends on the parameters ∆tij and ∆Ωij attained at the end of the maneuver. Setting

these parameters properly can lead to an increasing trend as desired. The following theorem

allows a better understanding of the influence of these parameters on the post-maneuver

secular inter-module distance.

Theorem 1 For sufficiently small ∆t1l, and for e1(tf ) <
√

2
√
3− 3, the terminal states

given by

rk(tf ) =R(∆Ω1k)

[
r1(tf ) + v1(tf )∆t1k −

µ

2

r1(tf )

∥r1(tf )∥3
∆t21k

]
, ∀ k = 2, 3, . . . , N

vk(tf ) =R(∆Ω1k)

[
v1(tf )− µ

r1(tf )

∥r1(tf )∥3
∆t1k

]
, ∀ k = 2, 3, . . . , N

(43)

yield ak(tf ) > a1(tf ).
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Proof

The energy equation states

v2

2
− µ

r
= − µ

2 a
(44)

where v = ∥v∥ and r = ∥r∥. The corresponding differentials satisfy

v dv +
µ

r2
dr =

µ

2 a2
da (45)

The aim is to compute da for given dr and dv. Since µ/ (2 a2) > 0,

sign (da) = sign
(
v dv +

µ

r2
dr
)

(46)

Let Eq. (45) be written for DSM1 at the end of a cooperative maneuver, i.e. v , ∥v1(tf )∥,

r , ∥r1(tf )∥, and a , a1(tf ). The differential values are given by dv , ∥vk(tf )∥ − ∥v1(tf )∥,

dr , ∥rk(tf )∥ − ∥r1(tf )∥, and da , ak(tf )− a1(tf ).

From Eq. (43), an expression for ∥vk(tf )∥ can be written as

∥vk(tf )∥ =

√
v21 −

2µ∆t1k
r21

v1 cos ς +
µ2∆t21k

r41
, ∀ k = 2, 3, . . . , N (47)

where ς is the flight-direction angle, i.e. the angle between r1(tf ) and v1(tf ). Eq. (47) can

be approximated using a second-order Taylor series expansion about ∆t1k = 0,

∥vl(tf )∥ ≃ v1 −
µ cos ς

r21
∆t1l +

∆t21lµ
2 sin2 ς

2 v1 r41
, ∀ k = 2, 3, . . . , N (48)

On the other hand, from Eq. (43), ∥rl(tf )∥ can be written as

∥rk(tf )∥ =

√
r21 + 2 r1 v1 cos ς∆t1k − µ

r1
∆t21k + v21 ∆t21k −

µ v1 cos ς∆t31k
r21

+
µ2∆t41k
4 r41

, ∀ k = 2, 3, . . . , N

(49)
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Eq. (49)) can be approximated using a second-order Taylor series expansion about ∆t1k =

0,

∥rk(tf )∥ ≃ r1 + v1 cos ς ∆t1k −
∆t21k
2

µ− r1 v
2
1 sin2 ς

r21
, ∀ k = 2, 3, . . . , N (50)

Substituting Eqs. (48) and (50) into Eq. (45) and manipulating yields

µ

2 a21
da1 = −µ∆t21l

2 r41

(
µ cos2 ς − v21 r1 sin2 ς

)
, ∀ k = 2, 3, . . . , N (51)

Hence,

sign (da1) = −sign
(
µ cos2 ς − v21 r1 sin2 ς

)
= −sign

(
µ cos2 ς − h2

1

r1

)
= −sign

(
cos2 ς − p1

r1

) (52)

where p1 is the semi-latus rectum, p1 = a1(1− e21). Defining

β , cos2 ς − p1
r1

(53)

it will now be determined whether β is positive or negative. To that end, β is written in

terms of the eccentricity e1 , e1(tf ) and the true anomaly f1 , f1(tf ). According to [18],

cos ς =
µ

h v
e sin f (54)

where h , ∥h∥ = ∥r1(tf )× v1(tf )∥. Substituting Eq. (54) into Eq. (53) yields

β =
µ

a1 (1− e21) v
2
1

e21 sin2 f1 − 1− e1 cos f1 (55)

From Eq. (44),

1

v21
=

a1 r1
µ (2 a1 − r1)

(56)
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Introducing Eq. (56) into Eq. (55) yields

β =
1

(1 + 2 e1 cos f1 + e21)
e21 sin2 f1 − 1− e1 cos f1 (57)

Since

1 + 2 e1 cos f1 + e21 ≥ 1− 2 e1 + e21 = (1− e1)
2 > 0 (58)

sgn(β) = sgn (ξ) where ξ , β (1 + 2 e1 cos f1 + e21). Thus,

ξ = −1− 3 e1 cos f1 − e21 − 3 e21 cos2 f1 − e31 cos f1 (59)

It can be proven that, for eccentricities e1 < 0.6812, ξ will always be negative. To that end,

Eq. (59) is differentiated as

dξ

d (cos f1)
= −3 e1 − 6 e21 cos f1 − e31 (60)

from which the maximum is obtained at

cos f1 = −3 e1 + e31
6 e21

(61)

To verify that a maximum is obtained, the second derivative is computed as

d2ξ

d(cos f1)2
= −6 e21 ≤ 0 (62)

For the case in which e1 = 0 it is clear that ξ = −1 < 0. The maximum of ξ is

ξ

∣∣∣∣
cos f1=−

3 e1+e31
6 e21

= −1

4
+

1

2
e21 +

1

12
e41 (63)

In order for the expression on the left-hand side of Eq. (63) to be positive at its maximum, the

condition for e1 is given by e1 >
√

2
√
3− 3 u 0.68125. In other words, if e1 < 0.68125, then
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ξ will always be negative, and so will β. Therefore, for e1 < 0.68, sgn(da1) = −sgn(β) > 0.

�

For cases in which e1 > 0.68125, one should find the anomalies f1 at which ξ switches

its sign. However, the orbits of interest in this work lie in the region of low eccentricities,

e1 < 0.1. The reader should keep in mind that some second-order approximations were

done, and these conclusions are valid in the range of ∆t1l where the Taylor expansions hold.

As stated in the theorem, this result holds for DSM guided according to Eqs. (19), but

it does not necessarily hold for DSM guided according to Eqs. (5). As the guidance laws

developed in this work are formulated according to Eqs. (19), the stated result holds in the

cases presented herein.

The implications of Theorem 1 can be understood as follows. For a sufficiently small

∆t1k, Eqs. (43) yield orbital elements for DSMk that are very similar to those of DSM1

(except the RAAN). Since a1(tf ) < ak(tf ), according to the first-order mapping between

mean and osculating elements presented in Ref. [19], one can assume that ā1(tf ) < āk(tf ),

where ā denotes the mean value of the osculating semimajor axis. Hence, the orbital period

of DSM1 is smaller than that of DSMk. Therefore, if at t = tf DSM1 is ahead of DSMk in

the along-track direction, DSM1 will get farther away from DSMk. Conversely, if at t = tf ,

DSM1 is behind DSMk in the along-track direction, they will get closer to each other. To

analyze the influence of ∆t1k and ∆Ω1k, the following equation can be examined [3].

y ≈ r1 (δθ + δΩcos i0) (64)

In Eq. (64), y represents the along-track shift of DSMk with respect to DSM1, for two DSM

having very similar orbital elements. δθ is a slight shift in the argument of latitude, which

produces a similar effect to that produced by the slight shift due to ∆t1k. Moreover, δΩ is

equivalent to the shift in RAAN ∆Ω1k, while i0 represent the inclination of DSM1.

Assume that for given ∆t1k1 and ∆Ω1k1 , the secular component of d1k is decreasing.

DSMk is represented by the black circle in Fig. 4. For the same r1(tf ) and v1(tf ), reducing
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Figure 4. Influence of ∆t1k and ∆Ω1k in shifting the modules in the along-track direction.

to some ∆t1k2 < ∆t1k1 (dashed circle in Fig. 4) moves DSMk backward in the along-track

direction, while still ā1(tf ) < āk(tf ). Hence, it induces a secular distance growth. On the

other hand, for the same r1(tf ) and v1(tf ), keeping the same ∆t1k1 and reducing ∆Ω1k

(dotted circle in Fig. 4) moves DSMk backward in the along-track direction for inclinations

0◦ < i < 90◦, contributing to a growing secular distance. Conversely, enlarging ∆Ω1k moves

DSMk forward in the along-track direction for inclinations 90◦ < i < 180◦, and thus causing

decreasing distance evolution.

In order to illustrate these effects, an example of two modules is provided. For ∆Ω1k =

0.05◦ and ∆t1k = 1 sec, the behavior seen in Fig. 5(a) is obtained. Keeping ∆Ω1k = 0.05◦

but reducing to ∆t1k = 0.1 sec, yields the secular growth seen in Fig. 5(b).

With respect to the secular component of the distance between DSMk and DSMj, a similar

argument can be used. According to Eq. (51), it is seen that the larger ∆t, the higher da1,

and thus the higher the semimajor axis of DSMk. If ∆t1k ≷ ∆t1j, ak(tf ) ≷ aj(tf ), and thus

āk(tf ) ≷ āj(tf ). Therefore, for given ∆t1k and ∆t1j, one can exploit ∆Ω1k and ∆Ω1j to

induce a growing secular behavior of the distance between DSMk and DSMj.
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(a) Post-maneuver decreasing secular distance.
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(b) Post-maneuver increasing secular distance.

Figure 5. Post-maneuver secular behavior.

VI. Simulations

This section provides simulation results showing how the optimal cooperative guidance

laws steer the satellites to achieve the required constraints on the terminal states, while min-

imizing the fuel consumption. Furthermore, it is illustrated how these constraints generate

slowly-drifting relative distances among the modules while forcing DSM1 to track a desired

reference orbit.

After the deployment in orbit by the launch vehicle, the modules perform a cooperative

establishment maneuver, based on the design model described by Eqs. (15), to reach a set

of states such that Eqs. (19) and (20) hold, and a subset of the osculating elements of DSM1

(i.e., a1, e1, i1) attain the desired values, according to Eq. (18). Once these specific states

are reached within a prescribed time interval, all the modules fly ballistically until any of

the constraints

Dmin ≤ d12(t) ≤ Dmax, Dmin ≤ d23(t) ≤ Dmax, Dmin ≤ d31(t) ≤ Dmax (65)

or the constraints (2) is violated.

According to Section II, if one of the constraints (65) or (??) is exceeded, a re-establishment

maneuver will be performed to reconfigure the cluster and then it will be allowed to fly bal-
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listically again. This procedure would be applied throughout the mission lifetime. The

dynamical model used to propagate the ballistic arcs – from now on named the coasting

model – includes a 21 × 21 EGM96 gravitational model, drag according to the ISA-1976

model, solar radiation pressure with a dual-cone shadow model, luni-solar attraction, tides

and relativistic effects.

Largely based on the SAMSON project [20], the following applicative scenario is simu-

lated, considering a cluster of three DSM.

A. Test Case

The bounds for the relative distances are set as Dmin = 0.1 km and Dmax = 250 km. The

time frame for a complete cooperative maneuver was chosen as tf = 5800 sec. The mission

lifetime is assumed to be 3 years. The initial conditions of the DSM, after launcher release,

as well as the required final orbital elements for DSM1 are listed in Table 2. The initial states

represent a typical launch vehicle dispersion around the nominal injection orbit (rows 1,2

and 3 of Table 2), while the desired values of aD, eD, iD correspond to the orbital elements

for DSM1 at t = tf (row 4 of Table 2). Furthermore, the following parameters are assumed:

Tn = 0.015N, Isp = 70 s, CD1 = CD2 = CD3 = 2.2, S1 = S2 = S3 = 0.11m2, density

during the maneuver time frame ρ = 1.137 10−13 kg/m3, ∆t12 = 0.1 s, ∆Ω12 = −0.05◦,

∆t13 = 0.05 s, ∆Ω13 = −0.025◦. The tolerances for the orbital elements of DSM1 are given

as |a− aD| = 20 km, |e− eD| = 0.0025, and |i− iD| = 0.25◦.

Using the boundary conditions of Table 2, the three modules first perform a cooperative

cluster establishment maneuver (see Fig. 6). During the maneuver, the simulated dynamical

model includes perturbations of the two-body force field, given by the J2 term of the zonal

potential and drag with a constant density ρ, according to Eqs. (15). The constraints forcing

DSM1 to track a reference orbit (Eqs. (18)), as well as the relative displacement constraint

(Eqs. (19)) and the mass constraint (Eqs. (20)) are all active.

Fig. 6(a), from top to bottom, presents an on-off control profile for the three modules

(orbit control, σk) and shows that the intentional mass disposal (γk) is required in this mission
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Table 2. Sample mission specifications. Initial orbital elements for DSM1 (row 1), DSM2 (row
2) DSM3 (row 3), as well as final (desired) states for DSM1 (row 4).

DSM a [km] e [-] i [deg] Ω [deg] ω [deg] f [deg] m [kg]

DSM1(t = ti) 6982 0.0035 51.5334 0.01667 10.01 50.1 6

DSM2(t = ti) 6977 0.0025 51.4667 −0.01667 9.99 49.9 6

DSM3(t = ti) 6979.25 0.002375 51.5417 0.02083 9.9875 49.875 6

DSM1(t = tf ) 6978 0.003 51.5 − − − −
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Figure 6. Cluster establishment after orbit injection. Solid line: DSM1, dashed line:

DSM2, bold line: DSM3.
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Figure 7. Cluster performance for the entire mission lifetime, considering a 21 × 21

EGM96 gravitational field, drag according to the ISA-1976 model, solar radiation

pressure with dual-cone shadow, luni-solar attraction, tides and relativistic effects.

scenario to let all the modules attain the same value of final mass. Fig. 6(b) depicts the

thrust pointing angles, αk and δk. Moreover, it is seen that the inter-module distance is kept

bounded during the establishment maneuver (Fig. 6(b), bottom). In Fig. 6(c) the exerted

thrust vector is resolved into radial, along-track, and cross-track components. Fig. 6(d) shows

the time history of the semimajor axes, eccentricities and inclinations during the maneuver.

Assuming that the maneuver is perfectly performed, i.e. according to the nominal solu-

tion, the DSM are then allowed to coast under the natural forces acting on them (see Fig. 7),

simulated by the coasting model, until any violation of the constraints described by Eqs. (1)

and Eqs. (2) occurs.

Establishing the proper relative position among the modules and achieving the same

ballistic coefficient renders the inter-module distance slowly drifting, but within the pre-

specified bounds for the entire mission lifetime (see Fig. 7(a)). Moreover, the limits on

the orbital elements of DSM1 (which tracks the reference path) are never exceeded (see

Fig. 7(b)), allowing the cluster to accomplish the mission requirements with only one initial

establishment maneuver, consuming approximately 60 grams of propellant per module.
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B. Closed-Loop Implementation of the Guidance Law

This section illustrates closed-loop implementation of the derived guidance law, according

to Eq. (42), and compares the performance of closed-loop implementation to an open-loop

execution of the same maneuver.

To that end, a maneuver lasting 5800 seconds is determined for a cluster composed of

N = 3 DSM. To compute the maneuver, the initial conditions listed in Table 2 are considered.

As opposed to the case elaborated in Section A, there are no specific requirements on the

payload orbit, and therefore no constraints were imposed on the semimajor axis, eccentricity

and inclination of DSM1. Moreover, the initial masses of the three modules are set as

as mk(ti) = 8 kg. The following parameters were assumed: Tn = 0.080N, Isp = 60 s,

CD1 = CD2 = CD3 = 2.2, S1 = S2 = S3 = 0.11m2, ∆t12 = 0.1 s, ∆Ω12 = −0.05◦ and

∆t13 = 0.05 s, ∆Ω13 = −0.025◦. For the design model, the constant density is taken as

ρ = 1.137 10−13 kg/m3.

In order to simulate the closed-loop implementation, the two-point boundary value prob-

lem is solved every 1160 seconds during the maneuver1. For recomputing the solution given

by Eq. (42), erroneous measurements are generated according to Eq. (40). The entries of the

matrix R, stated in Eq. (41), are given as σr = 5 m, σv = 0.02 m/s, and σm = 5 · 10−5 kg.

Moreover, the actual execution of the maneuver was simulated according to the obtained so-

lution (42) but while considering a more complete astrodynamical model including a 10×10

geopotential, density according to the model NRLMSISE−00, and errors in the magnitude

of the implemented thrust. The errors in the thrust magnitude were modeled as

Tk(t) = T n
k (t) + ϵTk

(66)

where T n
k (t) denotes the nominal thrust Tnσk(t) as obtained from the solution (42), and

ϵTk
∼ N (0, 0.010 N). Notice that ϵTk

was held constant along the maneuver.

In order to quantify the comparison between open-loop and closed-loop implementation,

1It would be desirable to recompute the maneuver at a higher frequency, but due to the required compu-
tational burden it is done every 1160 seconds.
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the performance of the maneuver is measured by means of three metrics defined as:

∆r1k =

∥∥∥∥∥rk(tf )−R(∆Ω1k)

[
r1(tf ) + v1(tf )∆t1l −

µ

2

r1(tf )

∥r1(tf )∥3
∆t21k

]∥∥∥∥∥ k = 2, 3, . . . , N

∆v1k
=

∥∥∥∥∥vk(tf )−R(∆Ω1l)

[
v1(tf )− µ

r1(tf )

∥r1(tf )∥3
∆t1k

]∥∥∥∥∥ k = 2, 3, . . . , N

∆m1k
=|mk(tf )−m1(tf )|

(67)

∆r1k , ∆v1k
, and ∆m1k

measure the violation of constraints (19) and (20). If ∆r1k = ∆v1k
=

∆m1k
= 0, then a perfect maneuver was performed as the terminal constraints were perfectly

achieved. However, due to measurement and actuation errors, as well as modelling errors,

these metrics attain positive values. In this sense, the smaller the achieved metric values,

the better the performance of the maneuver. If the attained metrics are sufficiently small, it

is expected that the inter-module distances would have a relatively low drift.

In order to perform the comparison, both closed-loop and open-loop executions of the

same maneuver were corrupted by the same level of uncertainties in the measurements, and

the same level of uncertainty in the thrust magnitudes of each DSM. The same astrodynam-

ical model is used for the open-loop and closed-loop guidance. A total of 22 Monte-Carlo

simulations of closed-loop and open-loop maneuvers were performed, where the random pa-

rameters are ϵTk
(corresponding to the thrust magnitude of each DSM) and υ (representing

the noise applied to the measurements). The obtained metrics (67), for all the cases, are

exhibited as histograms in Figure 8.

In the histograms, the light bars refer to the open-loop execution, and the dark bars

represent the closed-loop implementation of the guidance law. Fig. 8 shows that the closed-

loop implementation reduces the obtained errors in attaining the desired terminal constraints

(19) and (20).

Due to actuation errors related to the thrust magnitude, the obtained final masses (and

ballistic coefficients) are not equal, i.e. (19) is not perfectly achieved. Moreover, in these

examples, the mass disposal throttle parameter satisfies γk(t) = 0. This result stems from the
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Figure 8. Histograms of the obtained values for the metrics ∆r1k , ∆v1k
, and ∆m1k

. A comparison
of open-loop (light bars) and closed-loop (dark bars) implementation.

fact that in these examples no absolute orbit is targeted, and there are no large differences

in the initial masses of each closed-loop solution. Therefore, the optimizer finds trajectories

for the three DSM that attain the terminal constraints (19) and (20), without the need to

trigger the intentional mass disposal.

VII. Conclusions

Keeping a cluster of modules within bounded distances for prolonged intervals of time

is challenging due to differential perturbation effects. However, cooperative guidance can

mitigate the distance drift. To achieve that, distance-keeping constraints should be targeted.

It is important to design cooperative maneuvers that minimize the differences in ballistic

coefficients. This effect is significant for low Earth orbit clusters due to differential drag

effects. If an optimal guidance law as the one developed herein is successful in reaching

the desired terminal states, then a very low relative drift will be obtained for long-term

missions. However, in a real implementation, due to measurement and actuation errors,
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open-loop maneuvers might steer the system to terminal states that are far from satisfying

the aforementioned constraints. In this case, a closed-loop scheme such as the one proposed

herein should be implemented. The closed-loop scheme is much less sensitive to thrust and

measurement errors.
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Appendix A: Minimization of Ĥk

This section proves that the global minimum of Ĥk, defined by Eq. (26), is given by

Eqs. (27)-(28). Recall that Ck, Tk, Isp and g0 are given positive constants, whereas λvxk
,

λvyk , λvzk , and λmk
are time-varying Lagrange coefficients. Moreover, for the optimization

problem, σk ∈ [0, 1] and γk ∈ [0, 1]. Ĥk, as a function of αk and δk, is continuous and smooth.

If, for a given time t, λvxk
= λvyk = 0 and λvyz ̸= 0, then δ∗k = −sgn (λvzk)π/2 minimizes Ĥk,

which yields cos (δk) = 0, and αk is undefined. If, for a given time t, λvxk
= λvyk = λvzk = 0

then it is a singular point and both αk and δk are undefined, i.e. any αk and δk yield the

same value of Ĥk. For any other case, the following partial derivative is nullified:

∂Ĥk

∂αk

= σk
Tk

mk

[−λvxk
sin (αk) cos (δk) + λvyk cos (αk) cos (δk)] = 0 (68)

Since cos (δk) ̸= 0,

α∗
k =


α1∗
k , arctan

(
λvyk
λvxk

)
α2∗
k , arctan

(
λvyk
λvxk

)
+ π

(69)
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Now, the partial derivative with respect to δk is nullified:

∂Ĥk

∂δk
= σk

Tk

mk

[−λvxk
cos (αk) sin (δk)− λvyk sin (αk) sin (δk) + λvzk cos(δk)] = 0 (70)

from which

δ∗k =



δ11∗k , arctan

(
λvzk

λvxk
cos (α1∗

k ) + λvyk sin (α1∗
k )

)
δ21∗k , arctan

(
λvzk

λvxk
cos (α2∗

k ) + λvyk sin (α2∗
k )

)
= −δ11∗k

δ12∗k , arctan

(
λvzk

λvxk
cos (α1∗

k ) + λvyk sin (α1∗
k )

)
+ π = δ11∗k + π

δ22∗k , arctan

(
λvzk

λvxk
cos (α2∗

k ) + λvyk sin (α2∗
k )

)
+ π = −δ11∗k + π

(71)

From Eqs. (69) and (71), the local minima or maxima of Ĥk are found at (α1∗
k , δ11∗k ) or

(α2∗
k , δ21∗k ) or (α1∗

k , δ12∗k ) or (α2∗
k , δ22∗k ). Recall the definition of H̃k according to Eq. (29). By

direct computation it can be seen that

H̃k

∣∣∣∣
(α1∗

k ,δ12∗k )

= −H̃k

∣∣∣∣
(α1∗

k ,δ11∗k )

H̃k

∣∣∣∣
(α2∗

k ,δ21∗k )

= −H̃k

∣∣∣∣
(α1∗

k ,δ11∗k )

H̃k

∣∣∣∣
(α2∗

k ,δ22∗k )

= H̃k

∣∣∣∣
(α1∗

k ,δ11∗k )

(72)

To find the global minimum it is sufficient to evaluate H̃k

∣∣∣∣
(α1∗

k ,δ11∗k )

and H̃k

∣∣∣∣
(α2∗

k ,δ21∗k )

, and

determine which is the negative one, which constitutes the global minimum. The argument

that minimize H̃k is selected as either (α1∗
k , δ11∗k ) or (α2∗

k , δ21∗k ) such that H̃k is negative. In

this manner, α∗
k ∈ [−π/2, 3π/2) rad and δ∗k ∈ [−π/2, π/2] rad.

Since σk is nonnegative, to determine the argument σk that minimize Ĥk it is necessary
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to evaluate the minimum of the expression multiplying σk, i.e.

Sσk
, Ck+

Tk

mk

[λvxk
cos(α∗

k) cos(δ
∗
k) + λvyk sin(α∗

k) cos(δ
∗
k) + λvzk sin(δ∗k)]−λmk

Ck

Isp g0
(73)

Then

σ∗
k =


1, if Sσk

< 0,

0, if Sσk
≥ 0

(74)

Since γk is nonnegative, in order to determine the argument γk that minimize Ĥk it is

necessary to evaluate the minimum of the expression multiplying γk, i.e.

Sγk , Dk − λmk

Dk

Isp g0
(75)

Then γk is given by

γ∗
k =


1, if Sγk < 0,

0, if Sγk ≥ 0

(76)
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