Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Air damped microresonators with enhanced quality factor

Li, L. and Brown, J.G. and Uttamchandani, D.G. (2006) Air damped microresonators with enhanced quality factor. Journal of Microelectromechanical Systems, 15 (4). pp. 822-831. ISSN 1057-7157

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It is known that the dissipative damping force due to the air film trapped between the bottom of surface micromachined resonators and the substrate on which they are fabricated decreases in magnitude as the separation between the two increases. The practical outcome of this is that microresonators located close to a substrate will have higher damping and a lower quality factor Q. In order to further investigate this effect and compare experimental findings with theory, a new test device that enables modulation of the damping interaction between a surface micromachined resonator and the substrate has been fabricated. The device consists of a surface micromachined polysilicon microresonator, which is self-elevated out of the plane of the substrate using a bimorph beam. A second, identical microresonator lying parallel to the plane of the substrate has also been fabricated. Both devices have been fabricated using the polysilicon multiuser microelectromechanical systems (MEMS) processes (polyMUMPs). The resonator-to-substrate separation of the elevated resonator is varied by changing the temperature of the bimorph beam, and the Q factors for different separations have been measured. Experimental results show that the elevated microresonators have Q values which are 65% higher than the in-plane microresonators. These experimental findings show good agreement with the theoretical model of damping used.

Item type: Article
ID code: 4682
Keywords: Q-factor, damping, micromachining, micromechanical resonators, electrical systems, Electrical engineering. Electronics Nuclear engineering, Mechanical Engineering, Electrical and Electronic Engineering
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Electronic and Electrical Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 09 Nov 2007
    Last modified: 04 Sep 2014 17:08
    URI: http://strathprints.strath.ac.uk/id/eprint/4682

    Actions (login required)

    View Item