Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Methodology for determination of economic connection capacity for renewable generator connections to distribution networks optimised by active power flow management

Currie, R.A.F. and Ault, G.W. and McDonald, J.R. (2006) Methodology for determination of economic connection capacity for renewable generator connections to distribution networks optimised by active power flow management. IEE Proceedings Generation Transmission and Distribution, 153 (4). pp. 456-462. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Increased penetration of renewable energy in line with current national targets will necessitate the implementation of new operational management arrangements for the control of distribution networks. The traditional distribution network and accompanying operational philosophy is incapable of accommodating large amounts of distributed renewable energy generation. These existing distribution networks were designed to operate passively and deliver unidirectional power flows to dispersed customers. Changing the mode of operation to 'active network management' will allow increased connection of distributed generation, while also avoiding the need for expensive reinforcement of circuits and providing adequate network security for the distribution network operator. A method for actively managing power flows associated with the connection of multiple renewable generators to the distribution network is introduced. The accompanying benefits in terms of exploitable distribution network capacity are demonstrated through the determination of an economic 'cutoff' point for new connections, thus maximising the utilisation of the existing distribution network capacity.