Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Methodology for determination of economic connection capacity for renewable generator connections to distribution networks optimised by active power flow management

Currie, R.A.F. and Ault, G.W. and McDonald, J.R. (2006) Methodology for determination of economic connection capacity for renewable generator connections to distribution networks optimised by active power flow management. IEE Proceedings Generation Transmission and Distribution, 153 (4). pp. 456-462. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Increased penetration of renewable energy in line with current national targets will necessitate the implementation of new operational management arrangements for the control of distribution networks. The traditional distribution network and accompanying operational philosophy is incapable of accommodating large amounts of distributed renewable energy generation. These existing distribution networks were designed to operate passively and deliver unidirectional power flows to dispersed customers. Changing the mode of operation to 'active network management' will allow increased connection of distributed generation, while also avoiding the need for expensive reinforcement of circuits and providing adequate network security for the distribution network operator. A method for actively managing power flows associated with the connection of multiple renewable generators to the distribution network is introduced. The accompanying benefits in terms of exploitable distribution network capacity are demonstrated through the determination of an economic 'cutoff' point for new connections, thus maximising the utilisation of the existing distribution network capacity.