Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Laboratory evaluation of the hybrid fiber-optic current sensor

Dziuda, L. and Fusiek, G. and Niewczas, P. and Burt, G.M. and McDonald, J.R. (2007) Laboratory evaluation of the hybrid fiber-optic current sensor. Sensors and Actuators A: Physical, 136 (1). pp. 184-190. ISSN 0924-4247

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper gives details of the design, construction and laboratory evaluation of the pre-prototype optical current sensor developed specifically to prove the concept of the possibility of monitoring remotely operated electrical plant. The proposed sensor is of a hybrid construction, and uses an optical voltage-to-strain transducer to monitor a specially designed current transformer. In this application, the voltage-to-strain transducer is realized using a novel approach: it employs a fiber Bragg grating (FBG) bonded to a stack of multiple piezoelectric elements, with their respective electrodes connected in parallel. This approach greatly increases the measurement sensitivity; thus, the FBG can be interrogated using a classic scanning filter configuration rather than the interferometric technique. Moreover, since the absolute wavelength information is preserved, this brings the advantage of the simultaneous temperature measurement capability and enables the straightforward multiplexing of several sensors on one optical fiber.