Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

An arrayed waveguide grating based multiplexer and interrogator for Fabry-Perot sensors

Willshire, A.J. and Niewczas, P. and McDonald, J.R. (2005) An arrayed waveguide grating based multiplexer and interrogator for Fabry-Perot sensors. IEEE Sensors Journal, 5 (5). pp. 964-969. ISSN 1530-437X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, we propose an interrogation system capable of multiplexing four identical Fabry-Perot (FP) interferometric sensors using two wavelength-division multiplexing devices. One is a 40-channel DWDM channel monitor, the other a four-channel CWDM device. The sensors are connected to the output channels of the CWDM device in order to assign a portion of the spectrum to each sensor. The reflected spectra are then analyzed using the DWDM channel monitor. By monitoring the power incident on each of the DWDM channels, the four sensor reflection spectra can be reconstructed in software and information relating to the measurand obtained. Based on software simulations and previous laboratory experiments with single sensors, it is predicted that this system would be capable of interrogating four EFPI strain sensors simultaneously at frequencies greater than 5 kHz with a resolution of approximately 2 /spl mu//spl epsiv/ and a range of 3000 /spl mu//spl epsiv/.