Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Rapid prototyping - area efficient FIR filters for high speed FPGA implementation

MacPherson, K.N. and Stewart, R.W. (2006) Rapid prototyping - area efficient FIR filters for high speed FPGA implementation. IEE Proceedings Vision Image and Signal Processing, 153 (6). pp. 711-720. ISSN 1350-245X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A new algorithm that synthesises multiplier blocks with low hardware requirement suitable for implementation as part of full-parallel finite impulse response (FIR) filters is presented. Although the techniques in use are applicable to implementation on application-specific integrated circuit (ASIC) and Structured ASIC technologies, analysis is performed using field programmable gate array (FPGA) hardware. Fully pipelined, full-parallel transposed-form FIR filters with multiplier block were generated using the new and previous algorithms, implemented on an FPGA target and the results compared. Previous research in this field has concentrated on minimising multiplier block adder cost but the results presented here demonstrate that this optimisation goal does not minimise FPGA hardware. Minimising multiplier block logic depth and pipeline registers is shown to have the greatest influence in reducing FPGA area cost. In addition to providing lower area solutions than existing algorithms, comparisons with equivalent filters generated using the distributed arithmetic technique demonstrate further area advantages of the new algorithm.