Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Development of a small-scale generator set model for local network voltage and frequency stability analysis

Quinonez-Varela, G. and Cruden, A.J. (2007) Development of a small-scale generator set model for local network voltage and frequency stability analysis. IEEE Transactions on Energy Conversion, 22 (2). pp. 368-375. ISSN 0885-8969

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The integration of numerous small-scale generators into existing local networks (e.g., a microgrid) is anticipated to impact their operation, control, and protection. In particular, maintaining voltage and frequency stability within the defined limits is more onerous and requires investigation. The effect of protective limiters and characteristics such as the genuine inertia of the generation set must be taken into consideration in stability studies in order to accurately represent the overall dynamic characteristics of local distributed generators. This paper focuses on three fundamental aspects: 1) the development of a reciprocating engine/generator set model; 2) the laboratory testing of an experimental test rig; and 3) the influence of a volts-per-hertz ratio (volts-per-hertz ratio) limiter on the generator dynamic response. The experimental procedures used to determine the genuine inertia of the test rig are described and the system responses under different scenarios are used to validate the developed model. This emphasizes the significance of excitation protective limiters such as volts-per-hertz ratio, during the stability analysis.