Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Dynamic model of a lead-acid battery for use in a domestic fuel cell system

Duerr, M. and Cruden, A.J. (2006) Dynamic model of a lead-acid battery for use in a domestic fuel cell system. Journal of Power Sources, 161 (2). pp. 1400-1411. ISSN 0378-7753

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a review of existing dynamic electrical battery models and subsequently describes a new mathematical model of a lead acid battery, using a non-linear function for the maximum available energy related to the battery discharge rate. The battery state of charge (SOC) is expressed in a look-up table relative to the battery open circuit voltage (VOC). This look-up table has been developed through low discharge experiments of the battery modelled. Further, both the internal resistance and self-discharge resistance of the battery are subsequently expressed as functions of the open circuit voltage. By using an electrical model with these characteristics and a temperature compensation element to model different rates of charge and discharge, a relatively simple and accurate battery model has been developed. The new model takes into account battery storage capacity, internal resistance, self-discharge resistance, the electric losses and the temperature dependence of a lead acid battery. It is shown in this paper how the necessary parameters for the model were found. The battery modelled was a Hawker Genesis 42 Ah rated gelled lead acid battery. The simulation results of the new model are compared with test data recorded from battery discharge tests, which validate the accuracy of the new model.