Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Wavelet-based fuzzy reasoning approach to power-quality disturbance recognition

Zhu, T.X. and Tso, S.K. and Lo, K.L. (2004) Wavelet-based fuzzy reasoning approach to power-quality disturbance recognition. IEEE Transactions on Power Delivery, 19 (4). pp. 1928-1935. ISSN 0885-8977

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper proposes a wavelet-based extended fuzzy reasoning approach to power-quality disturbance recognition and identification. To extract power-quality disturbance features, the energy distribution of the wavelet part at each decomposition level is introduced and its calculation mathematically established. Based on these features, rule bases are generated for extended fuzzy reasoning. The power-quality disturbance features are finally mapped into a real number, in terms of which different power-quality disturbance waveforms are classified. Numerical results obtained from a large database show that the disturbance waveforms such as high- and low-frequency capacitor switching, voltage sag, impulsive transient, transformer energizing, and perfect sine waveform can all be correctly identified. The effect of the amplitude and frequency content of power-quality disturbance on the energy distribution patterns and the effect of noise on classification accuracy are also discussed in the paper.