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SUMMARY 

 

This study explores the insight that can be gained into the performance of a conventional sailing dinghy from a program 

of tanks testing in a range of displacement and trim conditions, and further investigates the extent to which performance 

can be predicted using a regression approach developed for sailing yachts, with the ultimate aim of developing 

performance prediction tools customised for sailing dinghies. 

 

The upright resistance of a Laser Dinghy is examined through tank-testing at three different displacements and with a 

range of trims. Results show that residuary resistance is substantially affected by displacement, and that trim can have a 

beneficial effect at the lower and upper extremes of the speed range. Comparison with tank test results show that the 

Delft sailing yacht regression approach does not predict the resistance of a Laser particularly accurately, substantially 

underestimates the weight sensitivity of a Laser, and cannot reliably predict the impact of trim. 

 

 

NOMENCLATURE 

 

wA  Waterplane Area (m
2
) 

wlB  Waterline Beam (m
2
) 

mC  Section Area Coefficient 

pC  Prismatic Coefficient  

tc  Total Resistance Coefficient  

LKM  longitudinal metacentric height from the keel (m) 

LCB  
position of the centre of buoyancy relative to midships (positive forwards) ) expressed as a percentage of the 

waterline length 

fppLCB  Position of Centre of Buoyancy measured from forward perpendicular (m) 

LCF  
position of the Centre of Flotation relative to midships (positive forwards) ) expressed as a percentage of the 

waterline length 

fppLCF  Position of Centre of Flotation measured from forward perpendicular (m) 

wlL  Waterline Length (m) 

M  Trimming moment (Nm) 

tR  Total Resistance (N) 

cS  Hull Wetted Area (neglecting appendages) (m
2
) 

cT  Hull Draught (neglecting appendages) (m) 

V  Speed (m/s) 

  

rcR   change in residuary resistance of the hull due to trim (N) 

c  Hull Volume Displacement (neglecting appendages) (m
3
) 

  Water Mass Density (kg/m
3
) 

 

 

 

 

 



1. INTRODUCTION 

 

The resistance of sailing yachts has been extensively studied over many years, with intensive programmes of tank testing 

related to design of high-profile yachts for competitions such as the America’s Cup, and the Vendee Globe, as well as 

some well-known campaigns designed for the purposes of development of regression models for use in Velocity 

Prediction Programs (VPPs). The most well-known of these has been developed in Technical University of Delft with a 

total of over fifty models tested over a period of more than twenty-five years (Keuning & Katgert [1]). The regression 

methods generally give reliable results for yacht forms fitting the range of parameters tested, with results for upright 

resistance typically within 5% or better of the tank test results. 

 

In contrast, relatively few tank-test studies have been carried for sailing dinghies, and little effort appears to have been 

expended on development of VPPs specifically with dinghies in mind. Dinghies are sufficiently small and cheap to 

construct that most design development programs have been based on building and sailing prototypes rather than tank 

testing;  although VPPs are certainly used by dinghy designers, it is questionable to what extent the hydrodynamic 

models utilised in the VPPs are valid for high-performance hulls. It is tempting to assume that many conventional 

dinghies are essentially similar to small yachts and that their performance can be predicted using models derived for 

yachts. 

 

However there are some particular challenges associated with performance prediction for sailing dinghies. The same hull 

may be sailed by crews with substantial weight variations, yielding differences in performance profiles which may well 

be significant in terms of the tight margins associated with elite dinghy racing. Indeed VPPs have been developed for 

“one-design” sailing dinghies, even though the hull shape of these boats is fixed within relatively tight tolerances, in 

order to identify optimum crew weight for prestigious international events such as Olympic Games.  

 

Furthermore, with a given crew weight, a much more substantial variation in trim and heel is achievable by crew 

movement than with a larger yacht, placing additional challenges on the prediction of performance via a VPP. Crews 

naturally trim and heel the boat to give the maximum perceived performance in a given set of conditions. One relatively 

extreme example of this is the so-called “fourth mode” condition discussed by authors including Bethwaite [2] in which 

the boat is sailed with extreme bow-down trim and heel in light winds to reduce wetted area. 

 

The present study followed from a tank-test investigation into a high-performance skiff-type sailing dinghy (the Aura) 

with a narrow hard chine form typical of many modern high performance dinghies. The study was carried out in two 

towing tanks, one of which was relatively small; as a consequence the model tested was sized for the smaller facility and 

was rather smaller than would be desirable for reliable results. A number of interesting issues specific to dinghy testing 

were nonetheless identified. In particular the study highlighted the importance of crew weight and trim on performance 

and the difficulty of predicting these variations using conventional regression formulae. It was decided that useful 

insight could be gained from testing a conventional moderate performance dinghy over a range of trim and displacement 

conditions prior to continuing an investigation of high-performance dinghies. The aim of the study is to examine how 

physical model testing can be used to gain insight into the performance of a sailing dinghy in realistic range of trim and 

displacements conditions, and to explore the extent to which the performance of the boat can be predicted using 

conventional regression approaches developed for sailing yacht performance. 

 

The Laser dinghy was chosen for this study for a number of reasons – it is a tightly controlled one-design class; it is an 

Olympic class for both men (with the “standard” sail) and women (with the smaller “radial” sail); it is one of the most 

popular racing dinghy classes worldwide with over 200,000 boats built since 1971. The Laser has a relatively 

conventional round-bilge hull-form, which might reasonably be assumed to be suitable for prediction using a yacht-

oriented VPP; in level trim conditions, all key hull-form parameters fall within the range of parameters for the Delft 

series regression model. It should be noted that the Laser is currently the subject of a legal dispute between the designer 

Bruce Kirby and some of the licensed builders, which may result in the class being renamed. 

 

The study examines the upright resistance only. The upright resistance was chosen as the focus of this study since a 

typical regression model (such as the Delft series model) uses the upright resistance as the foundation of the calculation, 

and then corrects the resistance with a series of “deltas” reflecting changes in resistance due to heel, trim, and side-force. 

From a practical perspective, there are a sufficient number of realistic displacement and trim variations in the upright 

condition which can be considered to give adequate insight into the complexity of the phenomena, and the reliability of 

existing techniques for prediction. 

 

Two sets of variations are considered in the tank tests implemented in the first part of the study. In the first set, the 

sensitivity of the resistance to weight is examined, with hulls being tested at total displacements of 150, 160 and 170kg. 

In the second set of tests the influence of trim on the upright resistance is examined at the 160kg displacement, in order 

to explore the difference between a level trim and an optimum trim upright resistance curve. In the second part of the 

study, the tank-test results are compared with upright resistance predictions from the Delft Systematic Series in order to 



explore the likely reliability of a VPP constructed using such a model in predicting the performance of a conventional 

sailing dinghy in a range of realistic trim and displacement conditions. 

 

2. HULL MEASUREMENT AND GENERATION 

 

The first challenge of the proposed study was to generate an accurate 3D model of the Laser hull. Several CAD models 

of a Laser can be found on the internet, but quick checks of some key dimensions against a full-scale hull reveal them to 

be highly inaccurate.  

 

In the current study the lines of the Laser were developed from scratch from a boat owned by the first author. The hull 

was marked out with nine sections as well as the keel-line, deck-edge, bow profile and a notional waterline. A set of 

points were measured along these key lines using a device constructed by the authors for the purpose, utilising the 

“Qualisys” motion capture system used at the Kelvin Hydrodynamics Lab. The device incorporates four standard 3D 

markers mounted on a pointer; the system is set up with a local co-ordinate system fixed to the pointer with origin at the 

tip of the pointer. A micro-switch is mounted in the tip, so that when the pointer is touched to the hull the position of the 

tip in a space-fixed global co-ordinate system can be generated. In this way a large number of points on the hull can be 

accurately measured very quickly. The set-up with boat, cameras and probe is shown in Figure 1. 

 

 

 
Figure 1 Hull Measurement System 

 

The set of data points is then adjusted by simple transformation to remove any heel and trim, and the points are entered 

as markers into a standard CAD package (MaxSurf). A preliminary NURBS surface was generated automatically using 

the Prefit software, and then adjusted manually to give the best fit. The bow section, which has a relatively complex 

geometry, was then added manually. In the final version, the RMS error over the markers at full scale was less than 

1mm. The body plan is shown in Figure 2. The geometry was exported to an IGS format and a physical model was 

constructed at a scale of 0.48:1 in Divinycell foam using a CNC router. Since the study only addresses upright 

resistance, there was no requirement for modelling lifting surfaces, and the hull was tested without centreboard or rudder 

in order to maximise the observed differences between conditions. 

 

The displacements studied were chosen using available information about the class. The nominal hull weight including 

fittings is quoted by the manufacturer as 58kg. Added to that are the weight of the mast, boom, foils, rudder stock, tiller 

and extension, ropes and sail. These were weighed at approximately 22kg. The optimal weight for a standard rig Laser 

sailor is often quoted at around 80kg. Hence the benchmark displacement was chosen to be 160kg, and a variation of 

plus/minus 10kg represents a reasonable reflection of the weight variation of club-level standard-rig Laser sailors. 

 

 

 
 

Figure 2 Laser Body Plan 80 kg nominal crew 
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(a) 70 kg crew, level trim 

 

 
b) 80 kg crew, level trim 

 

 
c) 90 kg crew, level trim 

 

 
d) 80 kg crew extreme bow trim 

 

 
e) 80 kg crew bow trim 

 

 
f) 80 kg crew stern trim 

 

Figure 3 Laser displacement and trim conditions 

 

 As mentioned previously, one of the goals of the study was to investigate the effect of trim; hence a level trim condition 

had to be defined, for each of the displacements. Since no well-defined waterline or baseline exists, based on experience 

of sailing the boat, the level trim condition for each displacement was defined as a condition in which the vessel is 

trimmed so that the transom stern was just touching the water surface. In this condition, the principal dimensions are 

shown for each of three displacements in Table 1 below. It can be seen from this that the lightweight crew will benefit 

from a 1.9% reduction in wetted area, whilst the heavy crew will incur a penalty of 1.8%. 

 

Table 1 Hull dimensions and form coefficients for displacement variation 

Notional 

Crew 

Weight 
c

 wlL
 wlB

 cT
 cS

 wA
 pC

 mC
 

fpp

wl

LCB

L
 

fpp

wl

LCF

L
 

 

(m^3) (m) (m) (m) (m^2) (m^2) 

    Light 0.150 3.763 1.095 0.089 2.904 2.813 0.546 0.755 0.535 0.565 

Standard 0.160 3.791 1.103 0.094 2.959 2.859 0.552 0.757 0.532 0.565 

Heavy 0.170 3.812 1.111 0.099 3.012 2.901 0.558 0.759 0.529 0.565 

 

Table 2 Hull dimensions and form coefficients for trim variation 

Trim Condition c
 wlL

 wlB
 cT

 cS
 wA

 pC
 mC

 

fpp

wl

LCB

L
 

fpp

wl

LCF

L
 

 

(m^3) (m) (m) (m) (m^2) (m^2) 

    Level 0.160 3.791 1.103 0.094 2.959 2.859 0.552 0.757 0.532 0.565 

Extreme Bow Trim 0.160 3.379 1.066 0.124 2.653 2.504 0.630 0.738 0.509 0.571 

Bow Trim 0.160 3.455 1.076 0.117 2.711 2.572 0.631 0.740 0.513 0.570 

Stern Trim 0.160 3.603 1.116 0.094 2.910 2.827 0.552 0.764 0.592 0.582 



The trim variation study was carried out for the default displacement of 160kg. Trim conditions were chosen based on 

experience, and can be regarded as indicative rather than definitive.  Two bow-down trim conditions, which are typically 

utilised in low-speed (light-wind) conditions, were investigated, along with one stern trim condition, which might be 

expected to be utilised in stronger wind conditions when the boat is planing. It is possible to estimate where the crew 

would have to sit longitudinally to generate these trims; however this value is not necessarily reflective of the sailing 

situation since such a calculation neglects the aerodynamic trimming moment generated by the sails. The trim conditions 

are illustrated in Figure 3 and the hull dimensions in these conditions are shown in Table 2.  

 

The bow down trim condition yields a reduction in wetted area of over 8% compared to the level trim case, whilst the 

extreme bow down trim yields over 10% reduction. The stern trim has 1.7% less wetted area than the level trim case. 

 

3. TANK TEST PROCEDURE 

 

The tests for the current study were carried out in the test tank of the Kelvin Hydrodynamics Laboratory in Glasgow. 

The tank measures 76m (L) x 4.6m (W) x 2.5m (D); for the current tests the water depth was set at 2.15m. The carriage 

can travel at more than 4.0m/s with a high level of accuracy in speed control and regulation. The tank is equipped with a 

modern high-performance multi-flap active absorbing wave-maker. 

 

The model was towed purely in the upright condition, and no appendages were fitted during the tests. The experiment 

procedure in general conformed to the standard ITTC procedures for model making and resistance testing. One minor 

variation, common in testing of sailing yachts, was to fit turbulence stimulation studs at 20% of the design waterline 

length from the bow perpendicular in the benchmark condition of level trim at 160kg displacement, rather than 

according to the ITTC standard for merchant ships. The model was free in heave, pitch and roll; the towing point, 

attached at the benchmark LCG for level trim, is capable of transmitting only a horizontal towing force. 

 

3.1 INSTRUMENTATION 

 

The resistance was measured using a proprietary tension-compression load cell, with excellent linearity characteristics. 

Carriage speed was measured using an encoder mounted on a trailing wheel. Running attitude was measured with two 

linear variable displacement transformers (LVDTs). Data was logged on a 16-bit data acquisition system with a 

sampling rate of 137 Hz. 

 

3.2 TEST MATRIX 

 

The model was tested in the three displacement conditions over a speed range corresponding to full scale speeds 

between 2.0 knots and 9 knots, at 0.5 knot increments. The bow-down trim conditions were tested from 2.0 knots to 5.0 

knots, whilst the stern trim condition was tested from 4.0 knots to 9.0 knots. 

 

3.3 SCALING 

 

Resistance results are scaled to full scale using the standard ITTC procedure, with the ITTC 1957 friction line, and all 

results scaled to fresh water at 15.0 degrees Celsius. It should be noted that there are some challenges associated with 

this scaling procedure, common to scaling of planing craft. In particular, the wetted area was here assumed to be 

constant at the value obtained at the static waterline for each condition. Since the vessel does adopt some dynamic trim, 

the resulting change in wetted surface will introduce a small error in scaling.  

 

3.4 UNCERTAINTY 

 

A full investigation of the uncertainty involving multiple installations and ballasting of the model was not carried out 

with these tests. However calculation based on uncertainty components identified as dominant in previous studies in this 

facility using this towing arrangement and dynamometer suggested that the bias limit on the total resistance coefficient 

at model scale is of the order of 0.25%. Even them it should be noted that the dominant sources of bias do not in any 

case affect comparisons between tests such as resistance changes between the model with and without interceptors. 

Multiple repeat tests carried out indicate that the corresponding precision of the total resistance coefficient was around 

0.4%. Hence the total uncertainty is estimated at around 0.5%.  

 

 

 

 

 



4. EXPERIMENT RESULTS 

 

4.1 INTRODUCTION 

 

Many of the results are presented here in terms of full-scale drag area (in m^2) plotted against full-scale speed (in knots). 

Drag area is defined as: 

 

21
Drag Area

2
t t cR V c S
 

  
 

 (1) 

 

Drag Area is used in preference to the conventional metric of total resistance coefficient since both wetted area and 

displacement vary substantially between the conditions; it is thus possible that a condition with a higher resistance 

coefficient may have a lower resistance, making the comparison of resistance coefficient potentially confusing. On the 

other hand, simply plotting total resistance tends to mask the subtle changes present in some conditions.  

 

4.2 VARYING DISPLACEMENT 

 

The variation of drag area with speed for the three level trim conditions is shown on Figure 4 below. A consistent trend 

can clearly be seen, with a major hump in drag area at around 6.5 knots for all displacements; a small hump can also be 

seen around 3.5 knots. Dynamic sinkage and trim were found to be almost identical for all three cases; results are shown 

in Figure 5. In this plot sinkage is defined as positive downwards and trim is positive bow up. It can be seen that the 

sinkage starts to become negative as the boat starts to plane at around 6.5 knots at which point the drag area starts to 

reduce and the rate of increase of trim starts to level off. 

 

 
Figure 4 Drag Area for differing displacements in level trim 

 

 
Figure 5 Sinkage and trim for different crew weights 
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From the point of view of the sailor, the key factor is the difference (or delta) in resistance from the optimum 

displacement. In the measured data the target speeds for each condition were the same, but some very small differences 

(within the ITTC recommended tolerances) were observed between measured speeds for corresponding tests. For the 

purposes of calculating the deltas, the results were therefore interpolated onto the exact target speeds using cubic spline 

interpolation. The deltas are plotted in Figure 6.  

 

 

 
Figure 6 Difference in resistance from 80kg crew weight 

 

 
Figure 7 Difference in speed from 80kg crew weight 

 

It should be remembered that since the results in Figure 6 are calculated from the differences between two sets of 

measurements they are expected to give higher uncertainty than single measurements. 

 

It can be seen that the magnitude of the difference in resistance for both light and heavy crew varies in the range of 2.7-

6.2%, compared to the reduction in wetted area of around 1.9% for light crew, and increase in wetted area of around 

1.8% for heavy crew. This discrepancy shows that the variation in weight has a substantial impact on residuary 

resistance as well as frictional resistance. 

 

Whilst the normal presentation for the yacht designer is to plot resistance against speed (or deltas of resistance against 

speed), from the perspective of the sailor, the change in speed for a given driving force is of more interest, as it relates 

more closely to the observed performance. Since the tests for different displacements were run at defined speeds, rather 

than at defined towing forces, this calculation involves more extensive interpolation than that involved in the resistance 

deltas so that speeds corresponding to specified values of towing force can be estimated and compared; hence results 

must be viewed with a little caution. Results are shown in  

Figure 7. 
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As would be expected from an approximately quadratic relationship, the results for speed deltas are typically around half 

the values observed for resistance deltas. Nonetheless the range of values of speed deltas indicated between around 1.4% 

and 4.6% are very significant in terms of dinghy racing, in which races may be won and lost by a few boat lengths after 

a race lasting of the order of an hour. 

 

4.3 VARYING TRIM 

 

In light winds and at low speeds it is common for Laser sailors to sit forward of the cockpit trimming the bow down and 

heeling to leeward. The aim is to lift the stern clear of the water and reduce wetted area, whilst also allowing the weight 

of the sail to help maintain its shape. Since the present study concentrates on upright resistance, no heel is implemented 

in the present study; nonetheless trimming the bow down in the upright condition allows identification of the trade-off 

between reduced wetted area and change in residuary resistance. 

 

The impact of bow-down trim on drag area is shown in Figure 8. It can be seen that the reduction in wetted area, and 

hence frictional resistance, is more than offset by increase in residuary resistance at three knots and above. The 

crossover occurs at around two and a half knots; at two knots, the bow-down and extreme bow-down trim conditions 

show reductions in drag area of 2.2% and 3.6% respectively.  

 

The corresponding results for stern-down trim are shown in Figure 9. 

 

 

Figure 8 Drag Area for Laser with bow-down trim 

 

Figure 9 Drag Area for Laser with stern-down trim 

 

The stern trim in which the transom is immersed is hugely disadvantageous at moderate speeds with over 30% penalty in 

resistance at 4.5 knots. This emphasises the critical importance of maintaining correct trim in moderate wind conditions. 
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However as the boat starts to plane around 6.5knots the penalty reduces substantially, and once the boat is planing 

quickly at 8knots and above, the stern trim reduces resistance by around 3%.   

 

 

Figure 10 Drag Area for Laser in optimum trim 

 
The results are summarised in Figure 10, showing the differences between the resistance curve for level trim and those 

based on the best trim out of the four conditions tested. 

 

5. PREDICTION OF LASER RESISTANCE USING REGRESSION METHOD 

 

5.1 DELFT REGRESSION METHOD 

 

The most widely used regression method for yacht-like hulls is the approach derived from the Delft systematic yacht 

hull series, described in its most recent version by Keuning and Katgert (2008). The approach is based upon tests of over 

fifty yacht hulls over a period of over twenty-five years.  

 

The method utilises a conventional prediction of the frictional resistance of the hull according to the ITTC 1957 friction 

line with the only non-standard feature being the utilisation of 70% of the waterline length in the calculation of the 

Reynolds Number.  

 

The residuary resistance is given by the following expression: 

 

2 3 1 3 1 3

0 1 2 3 4 5 6 7

fpp fpprc c c wl wl c

p m

c wl w wl wl fpp c wl

LCB LCBR B B
a a a C a a a a a C

g L A L L LCF T L

    
                         

 (2) 

 

The coefficients 0 7a a  are tabulated for Froude Numbers between 0.15 and 0.75, which correspond for the Laser to 

speeds of between around 1.8 – 8.8 knots depending on the displacement and trim condition. 

 

In order for the regression to yield reliable results it is necessary (but not sufficient) for the hull parameters of the vessel 

of interest to fall within the range of parameters tested in the derivation of the equation. These are summarised in Table 

3. 

Table 3 Delft Series Parameters 

Condition 
fpp

wl

LCB

L
 

pC  

2 3

c

wA


 wl

wl

B

L
 

fpp

fpp

LCB

LCF
 wl

c

B

T
 

mC  

1 3

c

wlL


 

Level Trim 70 kg 0.535 0.546 0.100 0.291 0.946 12.262 0.755 0.141 

Level Trim 80 kg 0.532 0.552 0.103 0.291 0.941 11.755 0.757 0.143 

Level Trim 90 kg 0.529 0.558 0.106 0.291 0.937 11.234 0.759 0.145 

Extreme Bow Trim 80 kg 0.509 0.630 0.118 0.315 0.890 8.586 0.738 0.161 

Bow Trim 80kg 0.513 0.631 0.115 0.311 0.899 9.195 0.740 0.157 

Stern Trim 80 kg 0.592 0.552 0.104 0.310 1.018 11.842 0.764 0.151 
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Delft Series Min 0.500 0.521 0.079 0.170 0.930 2.460 0.646 0.120 

Delft Series Max 0.579 0.580 0.265 0.366 1.002 19.380 0.790 0.230 

 

The Laser falls outside the range of the prismatic coefficient pC  for the two bow trim conditions, whilst the ratio of 

LCB to LCF, included as a measure of hull distortion falls outside the range for all three trimmed condition. Hence it is 

not reasonable to expect reliable results in these trimmed conditions. However it can be seen that the Laser falls within 

the parameter range in all three level trim conditions. 

 

An alternative approach is potentially possible for the bow-down trim conditions; in an earlier version of the method 

Keuning and Sonnenberg [3] give a formula for calculating the resistance delta due to bow-down trim. This was 

intended for investigating the relatively small bow-down dynamic trim which results in sailing yachts from the 

aerodynamic trimming moment in cases where moving crew weight cannot compensate for the trimming moment. The 

formula given is: 

 

  0 1 2 3 4 52 3
tan 1
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 (3) 

 
The coefficients 0 5T T  are tabulated for Froude Numbers between 0.25 and 0.6, which correspond for the Laser to 

speeds of between around 3-7 knots depending on the displacement and trim condition. The formula is applied to the 

vessel in level trim condition to yield a correction in the residuary resistance.  

5.2. COMPARISON OF DELFT PREDICTIONS WITH TANK TEST RESULTS 

 

Using the formula (2) above in conjunction with the wetted area and the related friction coefficient the total resistance 

and the drag areas were calculated for the three level trim conditions. A comparison of the drag area measured in the 

tank and the Delft prediction for the baseline case of 80kg crew in level trim is shown in Figure 11. It can be seen that 

the general agreement is quite good, especially in the region between 5.0-8.0 knots. However the agreement in the 

critical region of 3-5 knots (a common speed range for a Laser) is not so good, with an error of over 8% at 4.0 knots.  

 

The discrepancy between the Delft series and the tank results for all three level trim conditions is shown in Figure 12. In 

order to make the comparison the Delft values are interpolated onto the speeds used for the tanks tests. This is achieved 

using a cubic spline fit to the Delft prediction, which is the approach commonly used in VPPs. The trends are very 

similar for each displacement, but the errors increase slightly as the displacement increases, with peak error of over 9% 

for the 90kg crew. 

 

 
Figure 11 Tank data and Delft prediction for level trim 80kg crew 
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Figure 12 Delft prediction errors for three level trim cases 

 

 

These results show that the Delft method underestimates the residuary resistance of the Laser hull, particularly in the 

3.0-5.0 knot speed range, corresponding to Froude Numbers in the region of 0.25 - 0.425.  

 

Figure 13 shows Delft method predictions for the resistance deltas related to the change in crew weight corresponding to 

Figure 6. It can be seen that the Delft method underestimates the weight sensitivity of the boat substantially, 

underestimating the impact of the 10kg variation from the benchmark 80kg crew by a factor of more than three in the 

worst cases.  

 

 
Figure 13 Delft prediction of weight sensitivity for three level trim cases 
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Figure 14 Delft predictions of Extreme Bow Trim Case 

 

Figure 14 shows the results of attempts to predict the resistance in the extreme bow trim case using the Delft approach. 

The method using equation (3) above was tried first. In this approach, the residuary resistance in level trim is first 

calculated using equation (2); then the bow-down trimming moment is calculated from the longitudinal shift in the LCB 

compared to the level trim case. The correction to the residuary resistance is then calculated using equation (3) and the 

resulting residuary resistance is combined with the frictional resistance calculated using the parameters for the bow-

down trim case. This approach dramatically overestimates the residuary resistance correction due to the large bow-down 

trim; indeed the predicted correction to the residuary resistance is very substantially larger than the residuary resistance 

in level trim at low speeds.  

 

For comparison a calculation is carried out using equation (2) with the form coefficients for the trimmed vessel, although 

it is expected that this will not produce reliable results since the hull falls outside the range of coefficients tested in the 

series. In contrast this substantially under-predicts the resistance of the trimmed vessel. It is therefore concluded that the 

impact of bow-down trim on a Laser dinghy cannot be reliably predicted using the Delft approach. A similar conclusion 

may be reached for the stern trim case, for which no correction formula corresponding to equation (3) is given. 

 

6. DISCUSSION 

 

The tank results show that the effect of weight on upright resistance of a Laser is substantial, with between 2.7-6.2% 

changes in resistance for a 10kg change in weight from the nominal total weight of 160kg. The corresponding change in 

wetted areas is around 1.9% for the 10kg reduction and 1.8% for the 10kg increase, thus suggesting that the majority of 

the change in resistance is due to residuary rather than frictional resistance. These changes in resistance can be re-

interpreted by interpolation as suggesting changes in speed at constant drive force of 1.4-4.6%. 

 

It must be stressed that speed deltas at constant drive force do not by any means tell the whole story of the influence of 

crew weight on boat performance. One key effect is that heavier crews can generate substantially more righting moment 

than lighter crews. As wind speed increases, the speed of the boat sailing upwind will become limited to some extent by 

available righting moment, and lighter crews have to depower the rig more than heavier crews in order to reduce heeling 

moment. This depowering in turn reduces driving force, whilst also affecting aerodynamic side-force and hence 

hydrodynamic induced drag. In such conditions, heavier (and taller) sailors will start to be at an advantage sailing 

upwind, which will offset to some extent the speed loss in downwind sailing, for which righting moment is less likely to 

be an issue. Thus the relationship between sailing performance around a racecourse and crew weight is complex. 

However, it should be remembered that the results do directly reflect the impact of other weight components on the boat, 

such as an overweight hull, additional equipment such as a compass or a bottle of water, or the presence of water in the 

cockpit.  

 

Even in light wind conditions, when the righting moment is not an issue for lighter crews, the impact of boat speed on 

apparent wind speed and hence driving force is neglected in this simple comparison. In order to address these matters 

correctly, a velocity prediction program (VPP) would be required reflecting the full aero-hydrodynamic performance of 

the boat. Nonetheless, the results shown still give a strong indication of the significance of the impact of the crew weight 

on performance. 
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Trimming the boat by the bow does show small beneficial effects in low speeds corresponding to light winds, as 

expected. The impact of stern trim, giving an increase in resistance at moderate speeds is also expected, but the scale of 

the resistance penalty is quite surprisingly large at up to 30%. This emphasises the importance of correctly trimming the 

boat. 

 

The comparison between tank results and Delft regression predictions in the level trim condition show that the Delft 

method substantially underestimates the resistance in the 3-5knot speed range, and dramatically underestimates the 

impact of weight on resistance by as much as three times. It should be stressed that these comments are not intended as a 

criticism of the Delft method, which is known to give excellent results for sailing yachts, and which was not intended for 

these purposes. However the results show that resistance regression formulae derived for sailing yachts should be treated 

with great caution if they are to be used to create VPPs for use in dinghy design or for assessment of optimum crew 

weight.  

 

It is speculated that one reason for the discrepancy in the present case might be related to the shape of the Laser 

forebody, which is somewhat different from that of a typical yacht. The Laser bow has quite a high volume and low 

freeboard compared to the bow of a sailing yacht. The Laser was originally designed to be a dinghy which could be 

carried on the roof of a car, and it has been suggested that the bow shape was driven by the need to prevent the boat 

nose-diving in waves without adding freeboard, so that the boat could be easily lifted onto a car roof. However this full 

bow may contribute to additional residuary resistance compared to a conventional sailing yacht hull with similar form 

parameters. 

 

Nonetheless the Laser is still arguably more similar to sailing yachts than modern high-performance hard-chine skiff 

dinghies such as the Olympic 49er and 49er FX classes, and hence it is possible that discrepancies between predictions 

using regression methods derived for yachts and tank-test results may be even higher for boats of this type. 

 

Results for the trimmed condition show the importance of realistic modelling of trim in the context of VPPs if they are to 

predict performance correctly at the extremes of the speed range. Perhaps unsurprisingly, the Delft method, derived for 

the small trim angles likely to occur in a sailing yacht at low speed, cannot cope at all with the large trim angles 

achievable at most speeds in a small sailing dinghy by longitudinal movement of crew weight. 

 

In conclusion, the study shows that tank-testing can contribute useful insight into the performance profile of a moderate-

performance dinghy. Whilst the broad conclusions of the study would not come as a great surprise to anyone familiar 

with sailing a Laser dinghy, the magnitude of the sensitivity of resistance and speed to weight is larger than might be 

expected. Furthermore, the challenges of predicting the performance of the boat using a standard regression approach are 

much greater than was anticipated at the outset, emphasising that methods derived for yachts must be treated with 

caution when applied to sailing dinghies. 

 

There are a number of avenues for future study here. Some preliminary tank-tests of high performance dinghies 

including a 49er-like hull have been performed by the authors, and more tests are planned to provide a further insight 

into phenomena similar to those described in the present study, including the effect of heel as well as trim.  

 

In a parallel development, it would be beneficial to be able to build up an understanding of sailing dinghy resistance 

without having to go to the expense of building scale models and tank-testing. Hence the development of a reliable full-

scale measurement technique, for example following the work described by Watin [4], would be of some interest. This 

would also allow an interesting comparison between physical measurements at large model scale and full-scale as well 

comparison between measurements, regression methods and hydrodynamic approaches. This approach is currently being 

pursued by the authors.  

 

Finally, it is planned that the data generated in the present study will be incorporated into a velocity prediction program 

(VPP) so that the trade-off in crew weight between resistance and righting moment may be studied in more detail.  
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