Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Towards an online prognostic system for predicting the axial shrinkage of AGR cores

West, Graeme and Wallace, Christopher and McArthur, Stephen (2013) Towards an online prognostic system for predicting the axial shrinkage of AGR cores. In: Annual Conference of the PHM Society 2013, 2013-10-14 - 2013-12-17.

[img]
Preview
PDF (phmc_13_062)
phmc_13_062.pdf - Final Published Version

Download (499kB) | Preview

Abstract

In the UK, there is the desire to extend the operation of the Advanced Gas-cooled Reactor (AGR) power plants beyond their initial design lifetimes of 35 years. As part of the justification of extended operation, an increased understanding of the current and future health of the graphite reactor cores is required. One measure of the health of the AGR power plants is the axial height of the graphite core, which can be determined through measurements undertaken during statutory outages. These measurements are currently used to manually make predictions about the future height of the core, through identifying the relevant data sources, extracting the relevant parameters and generating the predictions is time-consuming and onerous. This paper explores an online prognostic approach to support these manual predictions, which provides benefits in terms of rapid, updated predictions as soon as new data becomes available. Though the approach is described with reference to a case study of the UK’s AGR design of power plant, similar challenges of predicting passive structure health also exist in other designs of power plant with planned license extensions.