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Abstract This paper describes a penalty-free multi-objective evolutionary optimization
approach for the phased whole-life design and rehabilitation of water distribution systems.
The optimization model considers the initial construction, rehabilitation and upgrading
costs. Repairs and pipe failure costs are included. The model also takes into consideration
the deterioration over time of both the structural integrity and hydraulic capacity of every
pipe. The fitness of each solution is determined from the trade-off between its lifetime
costs and its actual hydraulic properties. The hydraulic analysis approach used, known as
pressure-dependent modelling, considers explicitly the pressure dependency of the water
supply consumers receive. Results for two sample networks in the literature are included
that show the algorithm is stable and finds optimal and near-optimal solutions reliably and
efficiently. The results also suggest that the evolutionary sampling efficiency is very high.
In other words, the number of solutions evolved and analysed on average before finding a
near-optimal solution is small in comparison to the total number of feasible and infeasible
solutions. We found better solutions than those reported previously in the literature for the
two networks considered. For the Kadu network, for example, the new best solution costs
Rs125,460,980—a significant improvement. Additional statistics that are based on exten-
sive testing are included.
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1 Introduction

Awater distribution system is designed to meet the current regulatory standards for the quantity,
quality and pressure of the water supplied to consumers. However, subjected to continuous
environmental and operational stresses, an aging network will inevitably experience a declining
ability to transport water due to its diminishing hydraulic capacity as encrustation builds up in
pipes. The structural integrity of the network will also deteriorate, making it prone to bursts and
leakage. The implementation of a planned rehabilitation and upgrading strategy is crucial to
meet both current and future demands. Failure to do so would lead to adverse effects such as
water quality problems, increase in operating costs due to high head losses, increase in water
loss through leakage, low water supply pressure and unforeseen disruption of water supply to
consumers. The rehabilitation and upgrading of a water distribution system is complex and
involves a large amount of capital. Consequently, optimization models are being developed to
address this problem. As an illustration of the scale and urgency of the problem, investment
needs for buried drinking water infrastructure in the US are projected to increase from $30
billion per year in 2010 to $50 billion per year in 2040, with many utilities requiring sustained
investment at this level at least for several decades (AWWA 2012).

Rehabilitation and upgrading models fall broadly into three main groups (Dandy and
Engelhardt 2001). The first group focuses exclusively on the financial aspects. The second
group consists of models that yield rehabilitation and upgrading decisions for individual
components without considering the hydraulic performance of the network as a whole. The
third group includes the system-wide models that consider the hydraulic performance of the
entire network. Also, models for the design optimization of water distribution systems
frequently do not consider reliability. Reliability relates to the probability that the system
can supply the required amount of water at the required pressure. Two relatively robust
probabilistic reliability measures are the hydraulic reliability and pipe (or component) failure
tolerance. The hydraulic reliability has been defined as the fraction of the total demand that is
satisfied on average (Tanyimboh and Templeman 2000). The failure tolerance is a comple-
mentary reliability measure defined by Tanyimboh and Templeman (1998) as the statistical
mean of the fraction of the total demand that is satisfied when one or more links or other
components are out of service.

Reliability evaluation procedures for water distribution systems are highly complex and
have been categorised as NP-hard (Wagner et al. 1988). Generally, they require large numbers
of time-prohibitive hydraulic simulations that render their direct inclusion in the solution of
optimization problems impracticable. Consequently, many researchers have used surrogate
reliability measures instead (Saleh et al. 2012). For example, Tanyimboh and Kalungi (2008,
2009) maximized the statistical entropy of the pipe flow rates. Compared to hydraulic
reliability, calculation of the statistical entropy is a relatively simple procedure that requires
only the pipe flow rates and nodal demands (Tanyimboh and Templeman 2000). Also,
extensive research has shown strong positive correlation between statistical entropy and
hydraulic reliability (Tanyimboh and Templeman 2000; Setiadi et al. 2005; Saleh et al.
2012). For water distribution systems, the statistical entropy is generally considered to be a
measure of the uniformity of the pipe flow rates (Awumah et al. 1990; Tanyimboh and
Templeman 1993) derived from a probabilistic measure of uncertainty known as informational
entropy (Shannon 1948).

This paper extends the scope of the work of Tanyimboh and Kalungi (2008, 2009) in which
the pipe flow rates were determined by maximizing the statistical entropy of the water
distribution system with respect to fixed pipe flow directions that were pre-specified. An
inherent weakness of the approach in Tanyimboh and Kalungi (2008, 2009) is that the flow
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directions and the pipe sizes are mutually inter-dependent. Therefore, the optimal flow
directions are not known in advance. Tanyimboh and Kalungi (2008, 2009) used a single-
objective optimization model with linear programming that yields a single solution. By
contrast, the present approach has two objectives and, consequently, provides multiple non-
dominated solutions that have equal merit in principle. Frequently, there will be many non-
dominated solutions. The ease with which the statistical entropy of a water distribution system
can be calculated given the pipe flow rates provides an effective method to identify the subset
of solutions among the non-dominated solutions that merit further analysis using additional
criteria such as hydraulic reliability. In this way, the comparisons of the non-dominated
solutions, carried out after completing the optimization proper, were able to identify a solution
that is better than the Tanyimboh and Kalungi (2008, 2009) solution in terms of the overall cost
and hydraulic performance. The integrated model for whole-life costing of water distribution
systems that Tanyimboh and Kalungi (2008, 2009) proposed was utilised in the present work
for long-term rehabilitation and upgrading and is thus summarised briefly in Section 2 for
completeness.

The second aim of this paper is to assess a multi-objective evolutionary optimization
algorithm introduced recently by Siew and Tanyimboh (2012a) that is based on the Non-
dominated Sorting Genetic Algorithm II (Deb et al. 2002). Evolutionary optimization algo-
rithms for water distribution systems often use penalties and/or selection procedures (e.g.
tournaments) that may involve pair-wise comparisons of the candidate solutions to assess the
merits of infeasible solutions when solving optimization problems that have constraints. By
contrast, the penalty-free multi-objective evolutionary algorithm proposed by Siew and
Tanyimboh (2012a) addresses the node pressure constraints seamlessly, as an integral part of
the hydraulic analysis. The hydraulic analysis model that it uses is an enhanced version of
EPANET 2 (Rossman 2002) called EPANET-PDX (pressure-dependent extension) that simu-
lates water distribution systems with insufficient flow and/or pressure more realistically (Siew
and Tanyimboh 2012b). The proposed genetic algorithm has been discussed previously in
terms of the least-cost solution and the smallest number of function evaluations achieved on
some standard test problems (Siew and Tanyimboh 2010, 2011, 2012a). However, operators
used in genetic algorithms (e.g. mutation) are probabilistic in nature. Thus, a statistically more
robust assessment is used here that reflects the stochastic nature of the algorithm. New
solutions that are hydraulically feasible and cheaper than the current best solution in the
literature were found, for the Kadu et al. (2008) network that represents one of the challenging
benchmark problems in the literature. An improvement in cost of almost 4.5 % was achieved.

The remainder of this article consists of brief summaries of the costs considered in the
optimization model (in Section 2) and the hydraulic simulation model used (in Section 3). The
optimization model is described briefly in Section 4. Two test problems from the literature
were considered for this article. The results achieved are discussed in Section 5 followed by
concluding remarks in Section 6.

2 Overview of the Integrated Whole-Life Costing Model

The costs used in the optimization model are summarised briefly here. The overall design horizon
for the optimization is taken as 20 years that are divided into two phases. A two-phase strategy is
more economical; it helps to shorten the periods during which there will be excess capacity in the
water distribution system and provides added flexibility to address any uncertainties and other
changes that may arise during the first phase. The first phase involves optimizing the design of a
new network while the second phase rehabilitates and upgrades the network. The upgrading
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options considered are replacement and paralleling of pipes (for consistency with the original
specifications of the test problem considered here). Other rehabilitation options such as cleaning
and relining can also be implemented in the formulation. For an existing water distribution
system, the initial design phase (i.e. Phase I) does not apply. In such a situation only the
rehabilitation and upgrading phase (i.e. Phase II) is deployed.

The whole-life costing model (Tanyimboh and Kalungi 2008, 2009; and references therein)
is quite complex and thus only the main functions are summarized here. The overall cost can
be formulated as:

Cost ¼
X
τ¼1

2

βτCτ sτ ; rτð Þ 1þ bð Þ d−vð Þ ð1Þ

Cτ sτ ; rτð Þ ¼ f 1þ f 2þ f 3 ð2Þ
in which Cτ (sτ , rτ) is the cost of adding capacity rτ in each design phase τ. This cost depends
on the added capacity and the existing capacity sτ at the beginning of the relevant design phase.
f 1 represents the cost of pipelines including pipe installation, paralleling, replacement and
repair costs. f 2 represents the indirect cost of setting up construction plant and machinery and
is assumed to be incurred at the start of each phase. f 3 is for the costs that vary depending on
the magnitude of the capacity installed. The term (1+b)(d−v) is the compound factor, in which
v=0 when τ =1; v=T1, …, T2 when τ =2; T1 and T 2 are, respectively, the minimum and
maximum durations (in years) for Phase I; b is the annual compound interest rate for the capital
borrowed that has to be paid back after d years. βτ is the product of a discount factor (1+r)

−v

and price increase factor (1+c)v where r and c are the discount and the inflation rates in
construction cost, respectively; r and c were assumed to be equal.

The pipeline costs can be represented as

f 1 ¼ f 1a þ f 1b þ f 1c ð3Þ
where f 1a and f 1b represent the costs of new and parallel pipelines, respectively, and are
assumed to be equal. f 1c is the cost of replacing pipes and is assumed to be approximately 5 %
more than paralleling.

f 1a ¼ f 1b ¼
X
ij∈IJ

γp � exp cp � Dij

� � � lij þ REPij

� �
ð4Þ

f 1c ¼
X
ij∈IJ

γr � exp cr � Dij

� � � lij þ REPij

� � ð5Þ

where Dij and lij are the diameter and length of pipe ij, respectively. I J represents the set of
pipes in the water distribution system. γp , γr , cp and cr are user-specified empirical coeffi-
cients; REPij are the repair costs of the new pipes which can be expressed as

REPij ¼
X
t¼tb

tr J ij tð Þ � CBij � FCF LUij

� � � lij
1þ rð Þt−tsþ1 ;∀ij ð6Þ

where r is the discount rate, ts and tr are the first and the last year of a given design phase,
respectively; tb is the time from which a pipe starts to incur repair costs following the expiry of
any warranty that may apply. FCF(LUij) is the failure cost factor for land use, LUij, for pipe ij.
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The failure cost factors reflect the indirect costs due to pipe failures, e.g. disruption to traffic
and costs incurred by third parties. CBij is the repair cost per break and is taken as

CBij ¼ γbr Dij � 1000
� �Φ

; ∀ij ð7Þ
where γbr and Φ are user-specified empirical coefficients. J(t)ij is the break rate (breaks/km/
year) in year t. The break rate was taken as

J ij tð Þ ¼ 0:001974 � exp −0:00974 � Dij

� � � age1:808ij

�
; ∀ij ð8Þ

where ageij is the number of years since installation of pipe ij.
Other miscellaneous costs that may be associated with the volume of water supplied—for

example, expansion of the sewerage system—may be included if appropriate as follows.

f 3 ¼ VC � QVE
inst ð9Þ

where Qinst is the installed capacity in a design phase in l/s; VC and VE are user-specified
empirical coefficients. Details regarding the formulations in Eqs. 1–9 and further references are
available in Tanyimboh and Kalungi (2008, 2009).

3 Main Hydraulic Design Equations

We used an external hydraulic analysis model based on EPANET 2 called EPANET-PDX
(pressure-dependent extension) (Siew and Tanyimboh 2012b) that, intrinsically, ensures the
conservation of mass and energy equations are satisfied. The Hazen-Williams formula for the
head loss in a pipe is

hij ¼ ωlij
Qpij
Cij

� �α 1

Dβ
ij

ð10Þ

in which hij , lij , Qpij , Cij and Dij represent the head loss, length, volume flow rate, roughness
coefficient and internal diameter for pipe ij, respectively. The adverse effect of ageing on the
flow-carrying capacity of pipes was modelled as in Sharp and Walski (1988).

Cij tð Þ ¼ 18:0−37:2log
e0ij þ aij*ageij

Dij

� 	
; ∀ij ð11Þ

where Cij (t) is the Hazen-Williams roughness coefficient in year t, e0ij is the initial roughness
(mm) i.e. at the time the pipe was installed and aij is the roughness growth rate (mm/year).

The nodal demand value Qnj
req is the demand at the end of the relevant design phase.

Qnreqj ¼ Qreq
0 j 1þ DGR=100ð Þt; ∀ j ð12Þ

where Q0j
req is the demand for node j at the start of the relevant design phase, DGR is the

(percentage) annual rate of increase in the base demand and t is the number of years.

3.1 Bias-Free Efficient Procedure for Addressing the Minimum Node-Pressure Constraints

The residual pressures at the demand nodes of a water distribution system should be high
enough to deliver the quantity of water that is prescribed in the relevant standards for drinking
water supply (Twort et al. 2000). Unfortunately, evolutionary algorithms by nature usually
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generate both feasible and infeasible solutions. To address node-pressure constraints, penalty
methods have been applied widely. For example, Dridi et al. (2008) used constraint-violation
penalties in NSGA II (Non-dominated Sorting Genetic Algorithm) and NPGA-2 (Niched
Pareto Genetic Algorithm). The only rehabilitation option considered was the replacement
of old pipes with new pipes of the same diameter, based on a rather short planning horizon of
5 years. A major disadvantage of the penalty-based approach is that additional case-specific
parameters are introduced whose calibration is generally challenging. Dridi et al. (2008)
observed that the results obtained are highly dependent on the penalty coefficients used, and
user-specified constraint-violation penalties are not practical enough. A review of the methods
that have been proposed for handling constraints in evolutionary algorithms in general is
available in Coello Coello (2002).

In an attempt to alleviate these difficulties Deb (2000) proposed a constraint-violation
dominance concept with the following properties. (a) Any solution with no constraint violation
dominates all solutions with constraint violations. (b) Any solution with a constraint violation
dominates all solutions with larger constraint violations. This method of handling constraints
has the disadvantage that it rates dominated feasible solutions more highly than non-dominated
infeasible solutions. Secondly, by using only the amount of constraint violation exclusively,
regardless of any other relevant criteria, comparisons between solutions that have constraint
violations ignore the Pareto-optimality condition that is axiomatic in optimization problems
with multiple objectives. In the case of water distribution systems, it results in the preferential
propagation of uneconomical solutions that have small constraint violations at the expense of
more economical solutions with larger constraint violations. If, from one generation to the
next, the rate at which solutions with constraint violations are removed from the population is
excessive, essential genetic material (e.g. small pipe sizes) may become extinct and cause the
algorithm to slow down, plateau or converge prematurely.

The approach adopted here allows all the feasible and infeasible solutions generated to
compete in a way that is fundamentally bias-free with respect to constraint violations. The
proposed penalty-free multi-objective evolutionary algorithm uses pressure-dependent analysis
to assess each individual in the population of solutions. Unlike the conventional approach
known as demand-driven analysis, pressure-dependent analysis takes proper account of the
relationship between the flow and pressure at a node. By definition, feasible solutions satisfy
all nodal demands in full. Conversely, infeasible solutions do not and the shortfall in the water
they supply represents a real measure of the infeasibility of the water distribution system. In
this way, pressure-dependent analysis addresses the node pressure constraints as an integral
part of the hydraulic analysis. We used an enhanced version of EPANET 2 (Rossman 2002)
called EPANET-PDX (pressure-dependent extension) that carries out pressure-dependent
analysis seamlessly (Siew and Tanyimboh 2012b; Seyoum and Tanyimboh 2013).

4 Optimization Problem Formulation and Solution

The proposed approach involves two primary objectives. The first objective is to minimise the
overall cost for Phases I and II. The second objective is to ensure all nodal demands are
satisfied. The two objective functions F1 and F2 are defined as follows.

Minimise : F1 ¼ CR2 ð13Þ

Maximise : F2 ¼ DSR4 ð14Þ
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CR is the ratio of the cost of a particular solution to the cost of the most costly solution in
the entire population within a single generation.

CR ¼ Cost

Costmax
ð15Þ

where Cost is the cost of a particular solution and Cost max refers to the largest cost among all
the solutions in the same generation. The demand satisfaction ratio DSR is

DSR ¼ Qn

Qnreq
ð16Þ

where Qn is the actual flow supplied based on the available pressure and Qn req is the flow
required i.e. the demand. DSR is thus the ratio of the available flow to the required flow and
takes values between 0 and 1. A solution that has a DSR that is less than 1 cannot satisfy the
demands in full and, inherently, violates at least one minimum node pressure constraint. It is,
therefore, infeasible. This is the means by which the proposed algorithm distinguishes between
feasible and infeasible solutions. We used the DSR value of the worst-performing demand
node in Eq. 16 based on the evidence in Siew and Tanyimboh (2012a). The objective functions
in Eqs. 13 and 14 were designed to favour economical solutions that are just feasible or
marginally infeasible, in each generation of the genetic algorithm. The exponents (i.e. 2 and 4,
respectively, in Eqs. 13 and 14) are default values that have proved satisfactory so far (Siew
and Tanyimboh 2012a).

Figure 1 provides a diagrammatic overview of the proposed whole-life optimization
approach. The Non-dominated Sorting Genetic Algorithm II (Deb et al. 2002) that is used
extensively in many diverse fields was chosen for the computational solution of the optimi-
zation problem. One of the advantages of NSGA II is that the number of parameters the user
must specify is small (Dridi et al. 2008). A description of NSGA II is not provided here for
brevity. We wrote a basic NSGA II computer program in C++ and coupled it directly with the
hydraulic analysis model EPANET-PDX (pressure-dependent extension) to form the proposed
penalty-free multi-objective evolutionary algorithm. We used binary coding and simple oper-
ators namely single-bit mutation, single-point crossover and a tournament with two solutions
chosen at random to identify the solutions that participate in crossover. The crowding distance
operator in NSGA II (Deb et al. 2002) was amended to permit a greater concentration of
feasible solutions near the boundary between the feasible and infeasible regions. Also, this
reduces the risk of losing the best solutions in the current generation. This can occur if the
crowding distance operator is applied without restriction in the objective space (Siew and
Tanyimboh 2012a). By default, the crossover probability used is pc=1, i.e. the number of
offspring created through crossover is the same as the population size. The mutation rate is
pm=Nm/Np, where Nm is the number of offspring mutated and Np is the population size. The
mutation operator used swaps one bit that is selected at random in the solution that is mutated.

5 Results and Discussion

5.1 Whole-Life Design Optimization

The sample network considered is the Wobulenzi water distribution system shown in the
Appendix. The data used here are from Tanyimboh and Kalungi (2008) that has the full
specifications. The network is partially looped and consists of 1 reservoir, 16 demand nodes,
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21 pipes and 5 loops. The minimum residual head for full demand satisfaction=15 m; demand
growth rate DGR=4 % per annum; peak hour factor=2.0; fire-fighting demand applied at
node 4 only=25 % of node 4 demand; compound interest rate b=8 %; discount rate r=8 %;
lower and upper limits for the end of Phase I are T1=7 years and T2=14 years, respectively,

Yes 

Identify the cheapest design and upgrading sequence and 
hence the optimal Phase I duration 

Exit 

Maximum Phase I 
duration exceeded or 

existing network?

Phase I: Optimise the design for the given Phase I duration 

Existing network? 

Data input and 
initialisation 

Start 

Yes 

No 

Phase II: Optimise the rehabilitation, upgrading and capacity 
expansion of the cheapest design from Phase I (if a new 
network) or the existing optimal design from Phase I (if an 
existing network) 

PF-MOEA: 
• Minimise total cost 
• Maximise fraction of total network demand satisfied

PF-MOEA: 
• Minimise total cost 
• Maximise fraction of total network demand satisfied

Increase Phase I duration by 1 year 

No 

Fig. 1 Flow diagram for the overall design and upgrading methodology
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based on a 20-year planning horizon; pipe cost coefficients are γp = 32.093, cp=cr=3.7, γr =
33.928, γbr = 108.87, Φ = 0.6067; pipe warranty period tb=6 years; setting-up cost
f 2=$100,000; installed capacity coefficients are VC=130, VE=1.6; initial pipe roughness
e0ij=0.0021 mm; roughness growth rate aij=0.025 mm/year; the Hazen-Williams head loss
coefficients are C=130, ω=10.67; α=1.852 and β=4.87.

In Phase I the decision variables are (a) the duration of Phase I and (b) the pipe diameters. In
Phase II the decision variables are the diameters of (a) the existing pipes and (b) any parallel pipes
introduced in Phase II. There are 8 pipe diameters to consider: 80, 100, 150, 200, 250, 300, 350 and
400 mm. Therefore, with 21 pipes and 8 pipe sizes, there are 821≈9.2×1018 feasible and infeasible
solutions in Phase I, for each possible Phase I duration of 1 to 20 years. The total number of
solutions in Phase I is, therefore, 20×821≈1.8×1020. The rehabilitation and upgrading options in
Phase II are pipe replacement and/or paralleling. There are 921 pipe paralleling options and 821 pipe
replacement options; the pipe paralleling options for each pipe include the no-paralleling option.
Thus the number of solutions in Phase II is (8×9)21≈1.01×1039. This constrained optimization
problem is nonlinear and has discrete decision variables. There are (a) 16 minimum node-pressure
constraints; (b) 16 conservation of mass constraints; and (c) 5 conservation of energy constraints.
The hydraulic analysis of the designs ensures constraints (b) and (c) are satisfied. Constraints (a) are
addressed through the objective function F2 (Section 4, Eq. 14).

This is a challenging problem for there are (20×821)(8×9)21=1.9×1059 feasible and infea-
sible solutions. With reference to Fig. 1, the solution strategy proposed here samples only 8
Phase I durations of 7–14 years. Accordingly, the Phase I optimal design problem is solved, in
turn, for each of the 8 alternative durations. For each Phase I duration, the best solution for
Phase I is used as the starting point for the rehabilitation problem in Phase II. In this way, the
Phase I-plus-Phase II sequence with the least cost is identified as the optimal solution.

The overall efficiency of the proposed solution approach is due to (a) the above-mentioned
solution space reduction scheme and (b) the sequential optimization procedure which reduces
the computational complexity of the optimization problem. In this way, both the number of
decision variables and the size of the solution space under consideration at any given moment
are reduced considerably. It is worth re-stating that the duration of Phase I is one of the key
decision variables also. The main aim of this example is to show that the optimization
algorithm proposed can find optimal and near-optimal solutions quickly. In addition to its
inherent complexity, this example was selected because the combination of linear program-
ming and entropy maximization (used previously by Tanyimboh and Kalungi 2008) provides a
design that is considered economical and reliable and, consequently, is not easy to surpass.

Due to the reliability and efficiency of the proposed optimization algorithm (Siew and
Tanyimboh 2012a), 10 optimization runs (with different sets of initial populations that were
generated randomly) proved to be sufficient. For each optimization run, 10,000 function
evaluations or hydraulic simulations (for a population of size 100 and 100 generations) were
specified for each design phase. This is equivalent to 20,000 function evaluations (i.e.
hydraulic simulations) per Phase I-and-Phase II sequence. Thus there are 160,000 function
evaluations in total per optimization run (i.e.10,000 function evaluations per design phase×2
design phases×8 alternative Phase I durations); the eight Phase I durations are: 7, 8, 9, …,
14 years. The probability of crossover and mutation were pc=1 and pm=0.005, respectively,
for all the 10 optimization runs. An Intel single core personal computer (CPU: 3.2 Hz, RAM:
2 GB) was used. The average central processing unit (CPU) time for one optimization run
(consisting of 160,000 function evaluations) was 2.58 h. The maximum CPU time among the
10 optimization runs was 3.07 h while the standard deviation was 0.23 h. The variations in the
CPU time are due to differences in the number of iterations that the hydraulic analysis of
different solutions requires.
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5.1.1 Make-up of the Optimized Costs

Table 1 presents the overall construction, maintenance and failure costs for both the present
and previous models. For the present model abbreviated PF-MOEA, the whole-life cost attains
a minimum for a Phase I duration of 9 years. The solutions from all 10 optimization runs had
similar trends. This suggests that the chosen range of Phase I durations (i.e. 7 to 14 years)
achieves the objective of bracketing the cheapest solution. All the solutions presented here are
fully feasible, i.e. nodal demands and pressures are satisfied in full. For the previous model
abbreviated ME-LP (maximum entropy-linear programming) by Tanyimboh and Kalungi
(2008), the minimum total cost corresponds to a Phase I duration of 11 years. Figure 2 shows
a detailed breakdown of the total design, rehabilitation and upgrading costs, for the alternative
Phase I durations considered. The repair costs from Phases I and II contribute the smallest
fractions of the total cost. The new network design cost and the various capacity-related costs
f3 in Phase I are the major contributors to the total cost for all the alternative Phase I durations.
These costs, along with the repair cost, increase significantly with any delay in rehabilitation
and upgrading from a total of approximately 61 % for a Phase I duration of 7 years to 80 % for
a Phase I duration of 14 years.

The cheapest solution obtained by the present approach costs $3,814,298 (Table 1) and has
a Phase I duration of 9 years. This is approximately 3.5 % cheaper than the cheapest previous
solution of $3,953,663 with a Phase I duration of 11 years by Tanyimboh and Kalungi (2008).
In general, the linear programming approach in Tanyimboh and Kalungi (2008) yields
solutions that have segmental pipes with more than one diameter and tend to be cheaper than
conventional designs with single-diameter pipes. However, it can be observed in Table 1 that
apart from the solution with a Phase I duration of 14 years, the present approach generated
solutions with smaller overall costs than the previous model. The main reason is that the
previous solutions are maximum entropy-constrained solutions. In general, maximum-entropy
solutions are more reliable and, consequently, more expensive than conventional least-cost
solutions (Tanyimboh and Templeman 2000). As mentioned previously in Subsection 5.1, the
combination of linear programming and entropy maximization that was used in the previous
model by Tanyimboh and Kalungi (2008) often yields solutions that are not easily surpassed.
Table 1 shows that the cheapest present solutions for all the various Phase I durations have
smaller hydraulic reliability values (see the next subsection) than the cheapest previous

Table 1 Cost and hydraulic reliability for the cheapest solutions for the Wobulenzi network

Phase I duration
(years)

PF-MOEA cost ($ Million) PF-MOEA reliability ME-LP Costb ($ Million)

Phase I Phase II Total Phase I Phase II Total

7 2.862 0.998 3.860 0.999010 2.907 1.386 4.293

8 2.950 0.877 3.827 0.999116 3.006 1.071 4.077

9 3.047 0.768 3.814a 0.999017 3.084 0.966 4.050

10 3.148 0.689 3.837 0.999106 3.200 0.789 3.989

11 3.281 0.593 3.873 0.998867 3.315 0.639 3.954a,b

12 3.399 0.504 3.902 0.998869 3.414 0.544 3.958

13 3.565 0.415 3.980 0.998919 3.523 0.461 3.984

14 3.725 0.334 4.059 0.998834 3.631 0.409 4.040

a Identifies the cheapest solution
b From Tanyimboh and Kalungi 2008 (reliability value for the cheapest ME-LP solution=0.999197)
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solution. All the hydraulic reliability values in this article relate to the network and operating
conditions at the end of the planning horizon in Year 20.

5.1.2 Trade-off Between Cost and Reliability

A temporary pipe closure due to failure or maintenance reduces the capacity of a water
distribution system. Therefore, pressure-dependent analysis (Siew and Tanyimboh 212b)
was used to simulate the pipe closures. Pipes were closed individually. In practice, however,
the actual locations of isolation valves would be taken into account. A probabilistic pipe failure
model (Cullinane et al. 1992) was used to estimate the pipe availability values. The hydraulic
reliability, failure tolerance and entropy values (see Section 1) were calculated as defined in
Tanyimboh and Templeman (1998, 2000).

Each of the 10 optimization runs generated 8 different sets of non-dominated solutions, i.e.
one set for each alternative Phase I duration of 7 to 14 years. Therefore, the 10 optimization
runs provided 80 sets of non-dominated solutions in total. The cheapest feasible solution from
each of the 80 sets of non-dominated solutions was selected for an assessment of the trade-off
between cost and reliability; 80 solutions were thus selected for further analysis. Previous
research (Tanyimboh and Sheahan 2002; Tanyimboh and Setiadi 2008) has shown that only a
small fraction of the solutions are non-dominated if the selection criteria are (a) cost; (b)
entropy; (c) hydraulic reliability; and (d) failure tolerance. This may be because the cost,
entropy, hydraulic reliability and failure tolerance are strongly correlated. Therefore, in
concert, these criteria reduce drastically the number of non-dominated solutions. Only 5
solutions out of 80 were non-dominated based on cost and entropy. Reliability and failure
tolerance values were thus calculated for the 5 solutions. Only 3 solutions out of 5 were non-
dominated based on cost, hydraulic reliability and failure tolerance (Table 2). Details of the

Fig. 2 Breakdown of costs for the cheapest solutions found for the Wobulenzi network

Table 2 Performance indicators
for the best solutions for the
Wobulenzi network

ME-LP
solution

PF-MOEA solutions

1 2 3

Phase I duration (years) 11 9 9 10

Cost ($ Million) 3.954 3.814 3.824 3.864

Hydraulic reliability 0.999197 0.999017 0.999062 0.999275

Failure tolerance 0.924534 0.920000 0.925883 0.935727
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three solutions are in the Appendix. The present Solutions 1 to 3 (Table 2) are cheaper than the
previous solution. Also, the present solutions have virtually the same hydraulic reliability and
failure tolerance values as the previous solution. It can be seen that the present Solution 3
dominates the previous solution with respect to cost, reliability and failure tolerance.
Additional details on the various trade-offs are available in Siew (2011). The analysis also
revealed that, for the designs under consideration, statistical entropy was a considerably better
indicator of hydraulic reliability and failure tolerance than resilience index (Todini 2000).

5.2 Optimization of the Initial Construction Cost Only

This is the second example considered and it involves only the initial construction cost.
Therefore, it represents the simplest form of the Phase I optimization problem in that multiple
Phase I durations are not considered. The network was taken from Kadu et al. (2008) that has
the details of the optimization problem. The network is fully looped and consists of 24 demand
nodes, 34 pipes and 9 loops. There are 2 reservoirs with constant water levels of 100 m and
95 m, respectively. The network’s layout is shown in the Appendix. Fourteen candidate pipe
sizes are available for this network. Therefore, with 34 pipes and 14 pipe sizes, there are 1434≈
9.3×1038 feasible and infeasible solutions. The coefficients for the Hazen-Williams formula
are C=130, α=1.85, β=4.87 and ω=10.68.

Extensive investigation of the effectiveness of proposed optimization algorithm was conduct-
ed in this example as summarised in Table 3. The initial populations were generated randomly.
The maximum number of function evaluations (i.e. hydraulic simulations) permitted per optimi-
zation run was 500,000 and the crossover probability was pc=1 in all cases. Other parameters,
including the population size, mutation rate and number of optimization runs were as shown in
Table 3. A total of eight cases were considered. One case (out of 8) had the default values of the
coefficients of the Hazen-Williams formula in EPANET 2 (i.e. α=1.852, β=4.871, ω=10.667)
for completeness. Summarised results are shown in Table 3 based on sample sizes (i.e. the total
number of optimization runs) of 100 (in 6 cases out of 8) and 30 (in 2 cases out of 8) as the initial
results suggested the smaller sample size might also be statistically satisfactory.

The cheapest solution obtained was 125,460,980 Rupees (i.e. with Np=500, pm=0.05 in
Table 3), within 436,000 function evaluations. Other researchers have not found this solution
previously and it is the cheapest hitherto. Also, the minimum-cost solutions found in the eight
cases considered were close to the smallest minimum-cost. The means of the minimum-cost
differ from the smallest minimum-cost achieved here by only 2.31–4.15 %. The average
number of function evaluations to obtain convergence (within the specified maximum of
500,000 function evaluations) ranged from 354,160 to 397,083. The average CPU time to
achieve convergence was 1.11–1.25 h. To complete a single optimisation run consisting of
500,000 function evaluations, due to differences in the number of iterations per hydraulic
simulation, the average CPU time required was 1.57 h and the standard deviation was 0.10 h
on a personal computer (Intel Core 2 Duo with 2.5 GHz CPU and 1.95 GB RAM).

Further limited sensitivity analysis was also conducted to check the influence of the
mutation rate. Nine different additional mutation rates spread approximately evenly in the
range pm=[0.01, 0.7] were used; pm=0.05 and pm=0.07 that feature in Table 3 were excluded.
The population size was Np=200 and the maximum number of function evaluations permitted
was 500,000. Only five optimization runs were executed for each mutation rate. Therefore,
with only five trials per mutation rate for the limited sensitivity analysis, a fixed set of five
different initial populations (each with Np=200) that were generated randomly was used for all
the mutation rates considered. The minimum-cost feasible solution for the nine mutation rates
ranged from 126,035,000 to 129,832,000 Rupees. For the nine mutation rates, the average
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minimum-cost (based on 5 optimization runs per mutation rate) ranged from 127,615,000 to
131,353,800 Rupees. Based on the results in Table 3, it can be expected that a population size
of Np=500 would provide even better results. Overall, for the mutation rates and population
sizes attempted, the performance of the optimization algorithm was consistently reliable and
satisfactory.

Kadu et al. (2008) proposed a critical path concept to reduce the number of candidate
diameters for each pipe. In this way, they reduced the solution space to 8.65×1020 feasible and
infeasible solutions. We also tested the proposed optimization algorithm as summarised in
Table 3 using the same reduced solution space of size 8.65×1020 solutions as in Kadu et al.
(2008). The minimum cost achieved for a feasible solution was 125,826,425 Rupees within
82,400 function evaluations. This is only 0.29 % more costly than the smallest cost we
achieved for the full solution space of size 1434≈9.3×1038 solutions. Overall, the values of
the cost and function evaluations are improved, on average, by reducing the size of the solution
space. On average, approximately 27 % fewer function evaluations, i.e. hydraulic simulations,
were required to find a near-optimal solution when the solution space was reduced, in
comparison to the full solution space.

Haghighi et al. (2011) also solved the same optimization problem using a hybrid approach
consisting of a genetic algorithm and integer linear programming. A comparison between the
present approach and the best results reported previously in the literature is shown in the
Appendix. For the full solution space, the solution obtained by Kadu et al. (2008) was
131,678,935 Rupees, within 120,000 function evaluations. This is 4.96 % more expensive
than the new best solution of 125,460,980 Rupees. Haghighi et al. (2011) achieved
131,312,815 Rupees, within 4,440 function evaluations. This is 4.66 % more expensive than
the new best solution. For the reduced solution space, Kadu et al. (2008) obtained a solution of
126,368,865 Rupees, within 25,200 function evaluations. This is 0.72 % more expensive than
the new best solution.

However, the feasibility of the Kadu et al. (2008) and Haghighi et al. (2011) solutions is
questionable. Based on EPANET 2, the Kadu et al. (2008) and Haghighi et al. (2011) solutions
were deemed infeasible (as shown in the Appendix). The Kadu et al. (2008) solutions violate
the minimum node-pressure requirement at Nodes 12, 24 and 25 (for the full solution space)
and Node 26 (for the reduced solution space). Similarly, the Haghighi et al. (2011) solution
violates the minimum node-pressure requirement at Nodes 13, 24 and 25. By contrast, the new
solutions in this article are all feasible.

Figure 3(a) illustrates the progress of the proposed optimization algorithm for the best
solutions achieved for both the full and reduced solution spaces. For the full solution space, a
cost reduction from 294,152,000 Rupees at the start of the optimization to (131,003,000
Rupees and 73,500 function evaluations) was achieved. The algorithm converged at
(125,460,980 Rupees and 436,000 function evaluations). Also, fast reductions in cost from
175,535,000 Rupees at the start, i.e. at zero function evaluation, to (131,184,000 Rupees and
8,000 function evaluations) and then (127,850,000 Rupees and 25,000 function evaluations)
were achieved for the reduced solution space. The algorithm finally converged at (125,826,425
Rupees and 82,400 function evaluations). It is worth emphasizing, also, that the algorithm
found dozens of feasible solutions that are cheaper than the solutions found by Kadu et al.
(2008) and Haghighi et al. (2011) as summarised in Table 3. For example, for the full solution
space and a population size of Np=500, each of the mutation rates i.e. pm=0.005 and pm=0.05
achieved 30 solutions that are cheaper than Kadu et al. (2008) and Haghighi et al. (2011) in a
single optimization run. For the total 705 optimization runs executed, the proposed algorithm
discovered more than 3,800 individual solutions approximately (with mean, median and
standard deviation of Rs128,940,641, Rs129,006,500 and Rs1,424,767, respectively) that
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are feasible and cheaper than the previous best solution of Rs131,312,815 by Haghighi et al.
(2011). The distribution of these new solutions is shown in the Appendix. These results
illustrate clearly the high evolutionary sampling efficiency of the proposed algorithm. In other
words, the number of solutions evolved and analysed on average before finding a near-optimal
solution is small in comparison to the size of the solution space. Also, the small distance
between the graphs in Fig. 3(a) for the full and reduced solution spaces is worth a mention,
considering that the reduced solution space is approximately a factor of 1018 smaller than the
full solution space.

The pareto-optimal fronts for the best optimization runs are shown in Fig. 3(b) for both the
full and reduced solution spaces. In the full solution space, all permissible pipe sizes were
included. However, in the reduced solution space, for each pipe, the pipe sizes that are unlikely
to be feasible and/or competitive were excluded, leaving only 3–5 options in each case.
Consequently, for the low-cost solutions, the cost-ratio values for the full solution space are
smaller than the reduced solution space. It can be seen in Fig. 3(b) that the front for the full
solution space (in which Np=500) has a higher density of solutions than the front for the
reduced solution space (in which Np=200), and some solutions with the smallest cost-ratio
values are missing in the front for the reduced solution space.

(a) Evolution of the cost of the cheapest feasible solution  

(b) Frontier-optimal solutions 

Fig. 3 Progress graphs (a) and
Pareto-optimal fronts (b) for the
best optimization runs for the
Kadu network
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6 Conclusions

Application of the proposed optimization algorithm, so far, has been relatively straightforward.
In total, 705 optimization runs were executed for the Kadu et al. (2008) network for which
there were 352.5 million hydraulic simulations. The results suggest that both the optimization
and hydraulic simulation algorithms are efficient and reliable. The penalty-free multi-objective
evolutionary algorithm proposed uses pressure-dependent analysis. This accounts for the
pressure dependency of the nodal flows and obviates the need for penalties or tournament
selection procedures to address violations of the nodal pressure constraints. It is encouraging,
also, that the algorithm seems reasonably stable with respect to the mutation rate. This suggests
that fine tuning of the mutation rate may not be essential.

The whole-life design, rehabilitation and upgrading model developed takes into consider-
ation the deterioration over time of both the structural integrity and hydraulic capacity of every
pipe. Both direct and indirect failure costs are included. The upgrading options of paralleling
and replacement of pipes are considered along with the timing. The hydraulic reliability and the
overall cost are considered when choosing the best few design options to recommend. For the
whole-life design optimization problem considered (Tanyimboh and Kalungi 2008), a solution
was found that is both cheaper and more reliable than the previous solution in the literature
based on linear programming and entropy maximization. The results achieved are consistent
with the previous results (Tanyimboh and Kalungi 2008) and demonstrate the benefits of the
whole-life design optimization approach. The timing of the rehabilitation and upgrading is
important. Therefore it should be optimized along with the pipe diameters. It would be useful,
also, to extend the whole-life design optimisation problem to address a water supply system that
involves other components such as pumps, valves and multiple storage facilities.

For the benchmark optimization problem concerned with the initial construction cost only
(Kadu et al. 2008), thousands of solutions that are both fully feasible and cheaper than the best
known solutions in the literature were found. These results provide encouragement to extend
the proposed approach to even more challenging optimization problems involving, for exam-
ple, much larger water distribution networks in the real world and/or more complex aspects
such as optimal pump scheduling and tank operation that require extended period simulation.
Finally, results for the reduced solution space demonstrated a significant reduction in the
number of function evaluations needed to find optimal solutions. This strongly suggests a need
for further research to develop an efficient solution space reduction technique that is capable of
selecting appropriate candidate pipe sizes dynamically.

Acknowledgments This research was funded in part by the UK Engineering and Physical Sciences Research
Council (EPSRCGrant EP/G055564/1), the BritishGovernment (i.e. Universities UK’s Overseas Research Students’
Award Scheme) and the University of Strathclyde. The authors acknowledge the financial support with thanks.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are
credited.

References

Awumah K, Goulter IC, Bhatt SK (1990) Assessment of reliability in water distribution networks using entropy-
based measures. Stoch Hydrol Hydraul 4(4):325–336

AWWA (2012) Buried no longer: confronting America’s water infrastructure challenge

388 C. Siew et al.



Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary
algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287

Cullinane MJ, Lansey KE, Mays LW (1992) Optimization-availability-based design of water distribution
networks. J Hydraul Eng 118(3):420–441

Dandy GC, Engelhardt MO (2001) Optimal scheduling of water pipe replacement using genetic algorithms. J
Water Resour Plan Manag 127(4):214–223

Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng
186(2):311–338

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans Evol Comput 6(2):182–197

Dridi L, ParizeauM, Maihot A, Villeneuve J-P (2008) Using evolutionary optimization techniques for scheduling
water pipe renewal considering a short planning horizon. J Comput Aided Civ Infrastruct Eng 23(8):625–635

Haghighi A, Samani HMV, Samani ZMV (2011) GA-ILP method for optimisation of water distribution
networks. J Water Resour Manag 25(7):1791–1808

Kadu MS, Gupta R, Bhave R (2008) Optimal design of water networks using a modified genetic algorithm with
reduction in search space. J Water Resour Plan Manag 134(2):147–160

Rossman LA (2002) EPANET 2 user’s manual. Water Supply and Water Resources Division, National Risk
Management Research Laboratory, Cincinnati, OH45268

Saleh S, Barlow E, Tanyimboh T (2012) Unbiased and accurate assessment of surrogate measures of hydraulic
reliability of water distribution systems. 14th WDSA Conference, Adelaide, Australia, 24–27 September 2012

Setiadi Y, Tanyimboh TT, Templeman AB (2005) Modelling errors, entropy and the reliability of water
distribution systems. Adv Eng Softw 36(11–12):780–788

Seyoum AG, Tanyimboh TT (2013) Pressure dependent network water quality modelling. Proceedings of ICE:
Water Management. doi:10.1680/wama.12.00118

Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–428
Sharp WW, Walski TM (1988) Predicting internal roughness in water mains. J AWWA 80(9):34–40
Siew C (2011) A penalty-free multiobjective evolutionary optimization approach for the design and rehabilitation

of water distribution systems. PhD thesis, Department of Civil Engineering, University of Strathclyde
Glasgow, UK

Siew C, Tanyimboh TT (2010) Penalty-free multi-objective evolutionary optimization of water distribution
systems. 12th WDSA Conference, Tucson, Arizona, September 2010

Siew C, Tanyimboh TT (2011) Penalty-free evolutionary algorithm optimization for the long-term rehabilitation
and upgrading of water distribution systems. World Env. & Water Resources Congress, Palm Springs,
California, ISBN 978-0-7844-1173-5, pp 214–223

Siew C, Tanyimboh TT (2012a) Penalty-free feasibility boundary-convergent multi-objective evolutionary
algorithm for the optimization of water distribution systems. Water Resour Manag 26(15):4485–4507. doi:
10.1007/s11269-012-0158-2

Siew C, Tanyimboh TT (2012b) Pressure-dependent EPANETextension. Water Resour Manag 26(6):1477–1498
Tanyimboh TT, Kalungi P (2008) Optimal long term design, rehabilitation and upgrading of water distribution

networks. Eng Optim 40(7):637–654
Tanyimboh TT, Kalungi P (2009) Multicriteria assessment of optimal design, rehabilitation and upgrading

schemes for water distribution networks. Civ Eng Environ Syst 26(2):117–140
Tanyimboh TT, Setiadi Y (2008) Joint layout, pipe size and hydraulic reliability optimization of water distribu-

tion systems. Eng Optim 40(8):729–747
Tanyimboh TT, Sheahan C (2002) A maximum entropy based approach to the layout optimization of water

distribution systems. Civ Eng Environ Syst 19(3):223–253
Tanyimboh TT, Templeman AB (1993) Calculating maximum entropy flows in networks. J Oper Res Soc 44(4):

383–396
Tanyimboh TT, Templeman AB (1998) Calculating the reliability of single source networks by source head

method. Adv Eng Softw 29(7–9):449–505
Tanyimboh TT, Templeman AB (2000) A quantified assessment of the relationship between the reliability and

entropy of water distribution systems. Eng Optim 33(2):179–199
Todini E (2000) Looped water distribution networks design using a resilience index based heuristic approach.

Urban Water J 2(3):115–122
Twort AC, Ratnayaka DD, Brandt MJ (2000) Water supply. Arnold, London
Wagner JM, Shamir U, Marks DH (1988) Water distribution reliability. J Water Resour Plan Manag 114(3):253–294

Penalty-Free Evolutionary Optimization of Water Supply Networks 389

http://dx.doi.org/10.1680/wama.12.00118
http://dx.doi.org/10.1007/s11269-012-0158-2

	Assessment...
	Abstract
	Introduction
	Overview of the Integrated Whole-Life Costing Model
	Main Hydraulic Design Equations
	Bias-Free Efficient Procedure for Addressing the Minimum Node-Pressure Constraints

	Optimization Problem Formulation and Solution
	Results and Discussion
	Whole-Life Design Optimization
	Make-up of the Optimized Costs
	Trade-off Between Cost and Reliability

	Optimization of the Initial Construction Cost Only

	Conclusions
	References


