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SUMMARY

In this paper, we formulate clustering as a minimisation problem in
the space of measures by modelling the cluster centres as a Poisson
process with unknown intensity function. Thus, we derive a Ward
style clustering criterion which, under the Poisson assumption, can
easily be evaluated explicitly in terms of the intensity function. We
show that asymptotically, i.e. for increasing total intensity, the opti-
mal intensity function is proportional to a dimension dependent power
of the density of the observations. For fixed finite total intensity, no
explicit solution seems available. However, the Ward style criterion to
be minimised is convex in the intensity function, so that the steepest
descent method of Molchanov & Zuyev (2001) can be used to approx-
imate the global minimum. It turns out that the gradient is similar
in form to the functional to be optimised. Discretising over a grid, at
each iteration step the current intensity function is increased at the
points where the gradient is minimal at the expense of regions with a
large gradient value. The algorithm is applied to both synthetic data
(a toy 1-dimensional example and a simulation from a popular spatial
cluster model) as well as to a real life data set concerning the posi-
tions of redwood seedlings from Strauss (1975). Finally, the relative
merits of our approach compared to classical hierarchical and agglom-
erative clustering techniques as well as modern model based clustering
methods using (Markov) point processes and mixture distributions are

discussed.

Some key words: Cluster analysis; Optimisation on measures; Poisson

point process; Steepest descent.



1 INTRODUCTION

The term cluster analysis incorporates a wide class of techniques for dividing
data ‘points’ representing individuals or objects into groups. Such techniques
are widely used in exploratory data analysis and implemented in all major

commercial statistical packages.

Classical clustering techniques are often hierarchical in nature, building
a tree or the so-called dendrogram based on some distance measure. Thus,
starting from clusters consisting of a single point, at each step the pair of
clusters that are closest to each other are merged until arriving at a single
cluster containing all data points. The distance between two clusters may be
defined in a various ways, e. g., as the minimum distance from a member of
one group to a point of the other as in the single linkage algorithm (Sneath,
1957), the maximum such distance as in the complete linkage algorithm or
some average between pairs of points chosen from the two groups. Alterna-
tively, Ward (1963) argues that the loss of information caused by merging
clusters may be measured by the increment of the pooled within groups sum
of squared deviations, so that at each step one merges those groups whose
fusion results in minimum increase in the sum of squares. Finally, the tree
is thresholded in order to find the meaningful clusters, see, e. g., Hartigan
(1975) and Jardine & Sibson (1971).

In contrast, partition techniques are based on iteratively allocating points
to clusters. Fixing in advance the number of clusters (say k), initially k& points
are chosen as cluster centres and all other points are assigned to the nearest
centre. Re-allocation of a point is then based on some optimality criterion,
such as the trace or determinant of the pooled within groups sum of squares
matrix. The former again is Ward’s criterion, the latter was proposed by
Friedman & Rubin (1967). Similar techniques appear when finding the k-
mean of a sample of points, see Hartigan (1975) and MacQueen (1967).
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The techniques discussed above are essentially model-free, although their
efficiency depends on the shape and other characteristics of the clusters.
Recently, there has been a surge of interest in mixture models. Here, the
data is supposed to come from a mixture of £ components representing the
clusters. Thus, writing (yi, ..., ym) for the vector of observations, let ¢(j) €
{1,...,k} denote the component label of y;. Since ¢(-) is not observed,
we are in a missing data situation, and the goal is to estimate the missing
component indicators ¢(-), as well as any unknown model parameters . More
specifically, let f;(-; ) be the density for the 7" component. Then, assuming

independence, the complete data likelihood is

L(0; ¢) = [ [ fot (55 0)
j=1

If each component is normally distributed with mean p; and the same co-

variance matrix X, the log likelihood reduces to

10:6) = logL(0;) (1)
k
I b S TR R TI
i=1 =1 y;:(j)=i

If ¥ = 0?] and the means j; are estimated by the sample means of the
components, optimisation of (1) leads to the Ward criterion. For general ¥,
we re-obtain the Friedman and Rubin criterion. More details and variations
on this theme can be found in Banfield & Raftery (1993), Diebolt & Robert
(1994), Green & Richardson (1997), McLachlan & Basford (1988) and Scott
& Simons (1971). Further information on classical clustering methods can
be found in Everitt (1974), Hartigan (1975), Johnson & Wichern (1982),
Kaufman & Rousseeuw (1990), Mardia et al. (1979) and other textbooks on
multivariate statistics.

A disadvantage of most approaches outlined above is that the number

of clusters is decided in an ad hoc, subjective manner. Furthermore, the
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cluster centres only play an implicit role — approximated by the centre of
gravity or other ‘mean’ of the detected clusters — if they appear at all. These
difficulties are avoided by taking a point process approach. For instance,
Baddeley & Van Lieshout (1993), Van Lieshout (1995) and Van Lieshout
& Baddeley (1995) suggest an integrated model for the number of clusters,
their centres, and the data partition simultaneously. Currently, Baddeley
and Van Lieshout, in collaboration with amongst others N. Fisher of CSIRO
are generalising such an approach to spatial interpolation and extrapolation
problems. Coupling from the past ideas (Propp & Wilson, 1996) can be
used to sample from the posterior distribution of cluster centres, facilitat-
ing the estimation of model parameters and other quantities of interest, cf.
Van Lieshout (2000). See also Lawson (1993) and Lund (1999).

Here we propose an intermediate approach that is neither hierarchical nor
strongly model based. As above, we use a point process framework to allow
a variable number of cluster centres. The parent process of cluster centres
is assumed to be distributed as an inhomogeneous Poisson process, but no
other model assumptions are made. The total intensity of the point process
of parents is prefixed, and its spatial distribution is chosen so as to minimise

the Ward criterion.

The plan of this paper is as follows. In § 2, we propose considering the
cluster centres as a realisation of a Poisson process with unknown inten-
sity surface. We formulate a clustering criterion in the spirit of Ward as
the expected pooled within groups sum of squares. Section 3 considers an
asymptotic solution by letting the expected number of clusters increase. If
this number is instead set at a finite value, numerical optimisation is called
for. We adapt the steepest descent algorithm of Molchanov & Zuyev (2000Db),
Molchanov & Zuyev (2001) to the present context in § 4, and evaluate its
performance on synthetic and real life examples in § 5. The paper is concluded

by a critical discussion and comparison with hierarchical and model based



approaches.

2  OPTIMISING THE INTENSITY OF THE POISSON PARENT PROCESS

Throughout this paper, the data pattern to be analysed consists of a set
of points y = {91,...,ym} in a bounded subset D of the d-dimensional
Euclidean space R?. The Euclidean distance between two points z,y € D
is denoted by p(z,y). Our aim is to find a collection of cluster centres (or
parents) x = {zy,...,xx}, k = 0,1,..., explaining the data. This can be

done by minimising the following Ward-style criterion

trace Z Z (yj — @) (y; — CUz')T Z Z xz, yi), (2)

T E€X y; € Zx (5) T €X y; € Zx (i)

where Zy(z;) is the collection of points in the plane closer to x; than to any
other parent z; € x, j # i. In other words, Zx(z;) are the Voronoi cells
generated by the set x, see Okabe et al. (2000). Minimisation problems
for the functional (2) also with a general power § > 0 instead of 2, can
be traced to many other applications, including that of finding the k-mean
(Hartigan, 1975) of a configuration y in agglomerative clustering, or the
mailbox problem discussed by Okabe et al. (2000, Chapter 9). In all these
instances the number k£ has to be predetermined and steepest descent type
minimisation algorithms are used to find a configuration x that minimises (2).
This involves optimising in a space of moderate dimension of dk, but the
objective functional is not convex, so, as the initial configuration must be
provided by the user, there is no guarantee that the descent algorithm ends
up at a global rather than a local minimum.

The key innovation of the current paper is to interpret x as a realisation
of a Poisson point process II on D with finite intensity measure p. For
the homogeneous case, p is proportional to Lebesgue measure, but we are

mostly interested in the non-homogeneous case when p becomes a general



intensity measure. The total number of points of I in a set B is a Poisson
random variable with mean p(B) and the number of points in disjoint sets
are mutually independent. Therefore, constraints on the number of parent
points can be rephrased as constraints on the total mass p(D) which is also
the mean number of II-points in D. As p(D) is finite by assumption, the
total number of points in II is almost surely finite as well.

Now, replacing x with IT in (2) and taking the expectation of the random

variable thus obtained yields our objective functional that can be written as

FW=E, Y > plwy) - (3)

i €11 y; € Zoe ()
The subscript p under the expectation or probability signs is used to indicate
that the expectation or probability is taken with respect to the distribution of
a Poisson process with intensity measure p. A functional of type (3) (with an
arbitrary power of p(z;,y;)) was considered by Molchanov & Zuyev (2000a)
for optimising the locations of stations in telecommunication networks. In
this context, the daughters represent subscribers of the network, the parents
correspond to stations. Writing p(y, IT) for the minimal distance between y

and a point of II, (3) can be reformulated as
F)=> B {p’(y;, )} . (4)
7=1

Note that with positive probability IT is empty, in which case the distance
p*(y;, 1) in (4) is ill-defined. Thus, we must assign some value u to p(y;, 0).
Since we are dealing with minimisation of f(u), a natural choice for u is the
diameter of D, i.e. the maximal distance p(z, y) between two points x,y € D.

Since II is a Poisson point process, it is relatively straightforward to com-

pute the expectation in (4), yielding

F) =3 [ exp=n(Bartu) 0 D)yt 5)



where B,i/2(y;) is the ball of radius ¢'/2 centred at y;. The interested reader
is referred to the Appendix for a derivation of this formula.

The objective functional is defined on the set of all finite non-negative
measures and can be extended using (5) to signed measures, although with-
out immediate probabilistic interpretation readily available. An important
implication of (5) is that the objective functional is convex in p, that is for

every pair of measures p and 7, and for each ¢ € [0, 1],

fHep+ (1 =c)n} <cf(p) + (1 —c)f(n).

This is easily seen by using the fact that the function p — e™* is convex and
observing that convexity is preserved by integration.

Since the value of f(u) can be made arbitrarily small as the total mass
of 11 increases unboundedly, we have to constrain p(D) to some fixed a > 0.

Doing so, the minimisation problem can be written as

f(p) = min, (D) =a. (6)

Further constrains on p may be added to incorporate additional information
about the parents, e.g. by weighing their possible positions with a “cost”
function and considering only those p that do not exceed the total cost. See
Molchanov & Zuyev (2000a) for a general framework for optimising function-

als of Poisson point processes.

3 AN ASYMPTOTIC SOLUTION

Molchanov & Zuyev (2000a) suggested a framework of asymptotic analysis of
minimisation problems for functionals on measures with growing total mass.
Referring to Molchanov & Zuyev (2000a) for details, consider a sequence of
measures fi,, @ > 0, such that u, minimises f(u) over all measures with total
mass a. Then under certain technical conditions the normalised intensities

a~'y, converge to a limit, the so-called high intensity solution fi.



In our context, suppose that the daughter points y have been sampled
from a distribution with probability density p,(-), perhaps obtained by kernel
smoothing (Bowman & Azzalini, 1997) of y. Then the objective function (4)

transforms into

fMZL%W@Wm@M- (7)

The same functional (7) was considered by Molchanov & Zuyev (2000a) in
a telecommunication application, where it was shown that the density of a

high intensity solution /i is proportional to a power of the daughter density:

pa(2) o (py ()72 (8)

The interpretation of this result is that if a large number of parent points
are taken into account, they can be sampled from a density proportional to
(py(2))¥@*2). Such a sample provides a natural initial configuration for e.g.
the k-mean algorithm or the constrained optimisation problem (6), that can

be further improved using descent methods.

4 STEEPEST DESCENT ALGORITHM

The minimisation of functionals of measures can be done efficiently using
steepest descent algorithms, as described in Molchanov & Zuyev (2001). At
every step, the idea is to move from p to p + n for some suitably chosen
(signed) measure 1 such that the value of the objective function decreases as
fast as possible and the constraints are not violated. In our case, this means
that the total mass of u + n must be the same as that of p.

The steepness of a particular update from p to p + n is characterised
by the directional derivative of f(u) evaluated with respect to 7, which is
defined by

i {F(u+ tn) = £} = [ gu(In(ae). 9)



The function g,(-) is called the gradient of f(x). For the objective function
f(p) given by (3), the gradient equals

w2

o) ==> [ ep{-uBs)nD)}de.  (10)

*(yj,2)

A derivation of this expression can be found in the Appendix. Note that the
gradient (10) resembles f(u) as in (5), except for the integration interval.

The steepest descent algorithm iteratively redistributes mass of x4 in the
direction determined by this gradient. Clearly, to keep the total mass of u+n
constant, the added term 1 must have zero total mass, hence 7 is necessarily
a signed measure. The size ¢ of a step is controlled by the mass of the positive
(or negative) part of 7. To minimise the right-hand side of (9) one should
place an atom of mass ¢ at the minimum of g,(-) (or distribute it between
several global minima if they exist). Similarly, the negative mass —e should
ideally be placed at the maximum of g,(-), which amounts to taking away
an amount ¢ from g at this point. This can seldom be done, however, since
the current p may not have enough mass at this point, if at all. Thus, we
should remove mass from regions where g,(z) is large, until an amount
has been taken. More precisely, Molchanov & Zuyev (2000b), Molchanov &
Zuyev (2001) proved that the steepest descent direction 7 is obtained when
the mass of y is redistributed in such a way that all mass of y is taken from
D, ={x € D: gu(z) > t} for a suitable ¢t > 0, and placed at the point
where g, is minimal. The threshold value ¢ can be found from the condition
wu(Dy) = e. If the equality has no solution, then we choose the smallest ¢
satisfying u(D;) < £ and remove mass ¢ — u(D;) by reducing the p-content
of points z € D with g,(z) as close as possible to (but smaller than) ¢.

At the beginning of the algorithm, the step size ¢ is set at some arbitrary
value. Iteratively, in the direction specified by the steepest gradient, ¢ mass
is redistributed in the manner described above. If this step does not lead to a

decrease of the objective function, the step size is reduced and the procedure
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repeated. Note that since (5) is convex in pu, the steepest descent algorithm
converges to the global minimum from every initial state.
It is shown in Molchanov & Zuyev (2000a) that a necessary condition for

Problem (6) to have a solution can be formulated as

g (2) =c p*—ae., (1)

gu(2) > ¢ forall z,
for some constant ¢, given that measure p* minimises f(u) over all non-
negative measures with the given total mass. The constant c¢ is, in fact, the
Lagrange multiplier for the corresponding constrained optimisation problem.
The necessary condition (11) can be used as a stopping rule for the steepest
descent algorithm described above: stop if over all points in the support
of the current p the variation of g, is a constant ¢ within a predetermined
(small) number ¢, and at all other points z in the support of y, g,(2) is at
least ¢. The described algorithm is implemented in Splus and R-languages,
see, e. g., Venables & Ripley (1994) about statistical analysis using Splus/R.

The code is available on the web at

www.stats.gla.ac.uk/-ilya

www.stams.strath.ac.uk/~sergei

and distributed as an R-language bundle mesop. Data sets used in the fol-
lowing examples can be obtained from the same source.

As an illustration, Figure 4.1 shows several steps of the steepest descent
algorithm applied to a one-dimensional problem on D = [0,1] with y =
{0.2,0.4,0.5,0.55,0.9} and the measure’s total mass is fixed at a = 10. The
parent space is discretised into a grid with mesh size s (in our example
s = 0.02), and the intensity measure p is atomic and supported on the grid.
Note, however, that the data points y do not necessarily lie on the grid (e.g.

the point 0.55 here). Consider a daughter point y; € y. Then, the inner
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integrand in the objective functional (5) is a step function in ¢, with break
points at the squared distances from y; to grid points. Thus, if necessary
rearranging the indices of the grid points in such a way that p(zi,y;) <
p(x2,y1) < -+ < p(xn, Y1), the integral fOUQ exp{—p(By/>(y1) N D)} dt can be

written as

pP(1,1) + {0 (w2, 51) — p° (1, ) e P 4o
o {u? = (@, ) e D o)

A similar formula holds for the other summands in (5), and for the gradient.
Therefore, if for each y; a record is kept of the grid points sorted according
to their distance to y; as well as the increments in squared distance, updates

of the gradient and objective functional are easy to perform.

5 EXAMPLES

In all examples below we used the steepest descent algorithm described in
Section 4 on the unit square [0,1] x [0, 1] in the plane. The measures were
defined on a uniform grid with mesh size s = 0.02 in both directions. The
stopping rule was such that the descent is terminated if the variation of
the gradient over all atoms of p with mass greater than da is less than §
multiplied by the total range of the gradient (i.e. the difference between its
maximum and minimum). The descent works fast enough (about one second
per step on a SUN ULTRA 10 Workstation 360 MHz) for y consisting of 123
points as in the case study described below. Plausible results are obtained
already for the tolerance level § = 0.01 in about 100 steps, while § = 0.0001
requires considerably more steps to be done (in the range of several thousands

depending on the total mass of ).
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(b) The first descent step of size
€ = 1 adds an atom of size € to y at
the grid point with smallest gradi-
ent value (see (a)) and eliminates u
at those grid points where the gra-
dient shown in (a) was the largest
(f(p1) = 0.02629).
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(c¢) The second descent step of size
e =1 (f(u2) = 0.02243).

(d) The final solution g after 477
steps (f(@) = 0.01831).

Figure 4.1: Several steps of the steepest descent algorithm applied to a one-

dimensional problem on a grid of mesh size 0.02.
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5-1  Synthetic examples

We analyse a synthetic data set sampled from a stochastic cluster process.
The parents follow a Poisson point process with intensity 10; each parent has
a Poisson number of daughters with mean 10, scattered independently and
uniformly in a disc of radius 0.1 around the parent. After truncation to the

unit square, the pattern of 73 points shown in Figure 5.1 was obtained.

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.1: A synthetic two-dimensional data set.

Figure 5.2 shows the results of applying the numerical procedure of the
previous section. The optimal measure is shown for a range of total mass
levels. If the total mass is small in comparison to the number of data points,
the contours of the optimal intensity surface suggest a few large components.
Increasing the total mass, these groups split themselves in smaller clusters.
A more detailed Bayesian analysis based on the cluster process described

above and a repulsive Markov prior can be found in Van Lieshout (2000).

14



1.0

0.8

0.6

0.4

0.2

0.0
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Figure 5.2: Contour plots of the optimal measures (with varying total mass

a) for the synthetic data set. The contours are taken at the specified levels.
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5-2  Redwood data

Figure 5.3 shows the locations of redwood seedlings extracted from a larger
data set in Strauss (1975). The plot suggests aggregation of the seedlings,
which Strauss attributes to the presence of stumps of older redwoods, whose
position has not been recorded. The tree positions shown in Figure 5.3
contains those seedlings in region II of Strauss (1975, Figure 1, p. 474), a

roughly triangular area containing almost all of the redwood stumps.

0.8

0.6

0.4

0.2

0.0

02 0.4 0.6 0.8

Figure 5.3: Locations of redwood seedlings.

In Strauss (1975) a point process model was fitted to the redwood data,
later shown in Kelly & Ripley (1976) to be ill-defined. Surprisingly, although
the yet smaller square extracted by Ripley (1977) appears frequently in the
spatial statistics literature, the full data set seems to have been reanalysed
only in Van Lieshout (1995), where a cluster process was fitted with points
scattered according to a Gaussian distribution around parents that are dis-

tributed according to a repulsive point process model and the posterior in-
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tensity surface of cluster locations was computed. For the smaller data set
(corresponding to the top left corner of Figure 5.3) previous analyses include
Diggle (1983), where a Gaussian scatter model with a Poisson parent process
was fitted using a least squares approach. That yielded an estimated num-
ber of 26 stumps, which is implausible from a biological point of view. The
least squares approach does not allow for estimation of cluster positions as
such. Using a uniform distribution for the daughters instead of a Gaussian
one yielded similar results, see Diggle (1978). Finally, Lawson (1993) fitted
a similar Gaussian scatter point process, but failing to include a repulsive
parent model led to the implausibly large number of 16 parents.

Below we report the results of using the optimisation algorithm for the
Problem (6). Figure 5.4 shows contour plots of several optimal measures
with varying total mass a. The choice of a is obviously subjective, and — as
in hierarchical clustering algorithms — we recommend to consider a range of
values. As it can be seen from Figure 5.4, for small values of a, a few large
components explain most of the mass in the optimal measure; increasing the
value of a, the support of the optimal measure splits into more and more

groups.

6 DISCUSSION

In this paper, we treated partitioning a pattern of points into clusters as
an optimisation problem in the space of measures by assuming the parent
process of cluster centres to be an inhomogeneous Poisson process. Thus,
the output of the steepest descent algorithm is the optimal parent intensity
measure, the contour lines of which provide an indication of the plausible
clusters.

We defined the parent and daughter processes on the same space D,

but our approach is equally valid if the parent process were defined on some
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bounded E O D, a modification that is especially useful whenever edge effect
are a concern. Also, the Ward style pooled within groups sum of squares
criterion (3) may be replaced by other objective functionals. Additional
analysis is necessary in this case to verify the validity of the conditions for
the asymptotic results outlined in Section 3 to hold, see Molchanov & Zuyev
(2000a) for details.

In contrast to partition or mixture methods, the advantage of modelling
the cluster centres by a point process is that the number of cluster centres
need not be set in advance (nor be decided by ad hoc thresholding as in
hierarchical clustering). Furthermore, since the objective functional (5) is
convex, a global optimum is reached, rather than the locally optimal parti-
tions produced by hierarchical or partition-based techniques. It should be
noted that our model assumptions are very mild indeed. Alternatively, a
parametric Markov point process model could be employed, allowing esti-
mation of the model parameters, the posterior parent intensity measure and
cluster labels. However, the computational cost is higher than for our steep-
est descent algorithm, relying on Monte Carlo or coupling from the past
methods, cf. Van Lieshout (1995), Van Lieshout (2000) and Van Lieshout &
Baddeley (1995) or Lund (1999) for the special case where clusters consist
of at most a single point. A similar remark can be made for Bayesian mix-
ture models with a random number of components such as those in Green &
Richardson (1997).

Finally, the optimal measure p* can be used as input to a subsequent
more detailed analysis. For instance, the spatial Markov model approach
requires a reference Poisson point process, and p* would be a more natural
candidate for the intensity measure than the usual non-informative Lebesgue

measure.
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APPENDIX. THE OBJECTIVE FUNCTION AND THE GRADIENT.
The objective function. Here we compute the expectation of
P = [ (.l
D

if IT is an inhomogeneous Poisson process on D with intensity measure fu(-),
and v(-) denotes a finite measure on D. For (4), v(+) assigns equal mass 1 to
each data point y;, j = 1,...,m. Recall that p(z,II) is set to the diameter u
of D if IT is empty. Then

E,F(Il) = B, (v’ In—g) v(D) + E, { /D P (y, 10) Txz V(dy)}

= u2 efﬂ(D)y(D) + /D /000 pru{pQ(y, 1—[) > t: I 7& @} dty(dy)
= ’LL2 6_“(D)I/(D)
+ /D /Ooo pr,[ILN By (y) = ;1N {D\ Byusa(y)} # 0] dt v(dy)

e mD)y(D) + / / - ulB2)ND) [1_€*u{D\Bt1/z(y)}] dt v(dy)
D JO

Note that when ¢ exceeds u?, the inner integrand vanishes. Thus,
u2
f(p) = E,F(IT) = u? e (D) v(D) +/ / |:€7.U{Bt1/2(y)nD} _ efu(D)] dt v(dy)
D Jo

u?
:/ / eiﬂ{Btl/Z(y)mD}dtl/(dy).
D JO
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The gradient. Here we calculate the gradient. Firstly, the directional

derivative of f(u) can be written as

2
lim s~ ( / / ' [e—n{Btuz(y)ﬂD}—sn{Btuz(y)ﬁD} _efu{Btm(y)mD}] dt,,(dy)>
540 pJo

u2
- _/ / e MPurPhn{ B2 (y) N D} dt v(dy)
D JO

To express f(u) as an integral with respect to 7n(-), note that

2 2

/ eiﬂ{Btl/z (y)nD}T]{BtI/Q (y) m D} dt — / ef.u{Btl/Q (y)ﬁD} / n(dz) dt
0 0 z€D: p(z,y)<t!/?
2

:/ n(dz)/ e~MBa W} g
D p*(z.y)

Therefore, the gradient of f(u) is given by
u2
gu(2) = _/ / e B,1/2(y)ND} dt v(dy) .
D Jp*(2,y)
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