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Summary

In this paper� we formulate clustering as a minimisation problem in

the space of measures by modelling the cluster centres as a Poisson

process with unknown intensity function� Thus� we derive a Ward

style clustering criterion which� under the Poisson assumption� can

easily be evaluated explicitly in terms of the intensity function� We

show that asymptotically� i�e� for increasing total intensity� the opti�

mal intensity function is proportional to a dimension dependent power

of the density of the observations� For �xed �nite total intensity� no

explicit solution seems available� However� the Ward style criterion to

be minimised is convex in the intensity function� so that the steepest

descent method of Molchanov � Zuyev ��		
� can be used to approx�

imate the global minimum� It turns out that the gradient is similar

in form to the functional to be optimised� Discretising over a grid� at

each iteration step the current intensity function is increased at the

points where the gradient is minimal at the expense of regions with a

large gradient value� The algorithm is applied to both synthetic data

�a toy 
�dimensional example and a simulation from a popular spatial

cluster model� as well as to a real life data set concerning the posi�

tions of redwood seedlings from Strauss �
�
��� Finally� the relative

merits of our approach compared to classical hierarchical and agglom�

erative clustering techniques as well as modern model based clustering

methods using �Markov� point processes and mixture distributions are

discussed�

Some key words� Cluster analysis� Optimisation on measures� Poisson

point process� Steepest descent�
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� Introduction

The term cluster analysis incorporates a wide class of techniques for dividing

data �points� representing individuals or objects into groups� Such techniques

are widely used in exploratory data analysis and implemented in all major

commercial statistical packages�

Classical clustering techniques are often hierarchical in nature� building

a tree or the so	called dendrogram based on some distance measure� Thus�

starting from clusters consisting of a single point� at each step the pair of

clusters that are closest to each other are merged until arriving at a single

cluster containing all data points� The distance between two clusters may be

de
ned in a various ways� e� g�� as the minimum distance from a member of

one group to a point of the other as in the single linkage algorithm �Sneath�

��
��� the maximum such distance as in the complete linkage algorithm or

some average between pairs of points chosen from the two groups� Alterna	

tively� Ward ������ argues that the loss of information caused by merging

clusters may be measured by the increment of the pooled within groups sum

of squared deviations� so that at each step one merges those groups whose

fusion results in minimum increase in the sum of squares� Finally� the tree

is thresholded in order to 
nd the meaningful clusters� see� e� g�� Hartigan

����
� and Jardine � Sibson �������

In contrast� partition techniques are based on iteratively allocating points

to clusters� Fixing in advance the number of clusters �say k�� initially k points

are chosen as cluster centres and all other points are assigned to the nearest

centre� Re	allocation of a point is then based on some optimality criterion�

such as the trace or determinant of the pooled within groups sum of squares

matrix� The former again is Ward�s criterion� the latter was proposed by

Friedman � Rubin ������� Similar techniques appear when 
nding the k	

mean of a sample of points� see Hartigan ����
� and MacQueen �������
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The techniques discussed above are essentially model	free� although their

e�ciency depends on the shape and other characteristics of the clusters�

Recently� there has been a surge of interest in mixture models� Here� the

data is supposed to come from a mixture of k components representing the

clusters� Thus� writing �y�� � � � � ym� for the vector of observations� let ��j� �

f�� � � � � kg denote the component label of yj� Since ���� is not observed�

we are in a missing data situation� and the goal is to estimate the missing

component indicators ����� as well as any unknown model parameters �� More

speci
cally� let fi��� �� be the density for the ith component� Then� assuming

independence� the complete data likelihood is

L����� �
mY
j��

f��j��yj� ���

If each component is normally distributed with mean �i and the same co	

variance matrix �� the log likelihood reduces to

l����� � logL����� ���

� �
�

�

kX
i��

ni log j�j �
�

�

kX
i��

X
yj ���j��i

�yj � �i�
�����yj � �i��

If � � ��I and the means �i are estimated by the sample means of the

components� optimisation of ��� leads to the Ward criterion� For general ��

we re	obtain the Friedman and Rubin criterion� More details and variations

on this theme can be found in Ban
eld � Raftery ������� Diebolt � Robert

������� Green � Richardson ������� McLachlan � Basford ������ and Scott

� Simons ������� Further information on classical clustering methods can

be found in Everitt ������� Hartigan ����
�� Johnson � Wichern �������

Kaufman � Rousseeuw ������� Mardia et al� ������ and other textbooks on

multivariate statistics�

A disadvantage of most approaches outlined above is that the number

of clusters is decided in an ad hoc� subjective manner� Furthermore� the
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cluster centres only play an implicit role � approximated by the centre of

gravity or other �mean� of the detected clusters � if they appear at all� These

di�culties are avoided by taking a point process approach� For instance�

Baddeley � Van Lieshout ������� Van Lieshout ����
� and Van Lieshout

� Baddeley ����
� suggest an integrated model for the number of clusters�

their centres� and the data partition simultaneously� Currently� Baddeley

and Van Lieshout� in collaboration with amongst others N� Fisher of CSIRO

are generalising such an approach to spatial interpolation and extrapolation

problems� Coupling from the past ideas �Propp � Wilson� ����� can be

used to sample from the posterior distribution of cluster centres� facilitat	

ing the estimation of model parameters and other quantities of interest� cf�

Van Lieshout ������� See also Lawson ������ and Lund �������

Here we propose an intermediate approach that is neither hierarchical nor

strongly model based� As above� we use a point process framework to allow

a variable number of cluster centres� The parent process of cluster centres

is assumed to be distributed as an inhomogeneous Poisson process� but no

other model assumptions are made� The total intensity of the point process

of parents is pre
xed� and its spatial distribution is chosen so as to minimise

the Ward criterion�

The plan of this paper is as follows� In x �� we propose considering the

cluster centres as a realisation of a Poisson process with unknown inten	

sity surface� We formulate a clustering criterion in the spirit of Ward as

the expected pooled within groups sum of squares� Section � considers an

asymptotic solution by letting the expected number of clusters increase� If

this number is instead set at a 
nite value� numerical optimisation is called

for� We adapt the steepest descent algorithm of Molchanov � Zuyev �����b��

Molchanov � Zuyev ������ to the present context in x �� and evaluate its

performance on synthetic and real life examples in x 
�The paper is concluded

by a critical discussion and comparison with hierarchical and model based






approaches�

� Optimising the intensity of the Poisson parent process

Throughout this paper� the data pattern to be analysed consists of a set

of points y � fy�� � � � � ymg in a bounded subset D of the d	dimensional

Euclidean space Rd � The Euclidean distance between two points x� y � D

is denoted by ��x� y�� Our aim is to 
nd a collection of cluster centres �or

parents� x � fx�� � � � � xkg� k � �� �� � � � � explaining the data� This can be

done by minimising the following Ward	style criterion�
�trace

��
�
X
xi�x

X
yj�Zx�xi�

�yj � xi� �yj � xi�
�

��
	


� �

X
xi�x

X
yj�Zx�xi�

���xi� yj� � ���

where Zx�xi� is the collection of points in the plane closer to xi than to any

other parent xj � x� j �� i� In other words� Zx�xi� are the Voronoi cells

generated by the set x� see Okabe et al� ������� Minimisation problems

for the functional ��� also with a general power 	 
 � instead of �� can

be traced to many other applications� including that of 
nding the k	mean

�Hartigan� ���
� of a con
guration y in agglomerative clustering� or the

mailbox problem discussed by Okabe et al� ������ Chapter ��� In all these

instances the number k has to be predetermined and steepest descent type

minimisation algorithms are used to 
nd a con
guration x that minimises ����

This involves optimising in a space of moderate dimension of dk� but the

objective functional is not convex� so� as the initial con
guration must be

provided by the user� there is no guarantee that the descent algorithm ends

up at a global rather than a local minimum�

The key innovation of the current paper is to interpret x as a realisation

of a Poisson point process � on D with 
nite intensity measure �� For

the homogeneous case� � is proportional to Lebesgue measure� but we are

mostly interested in the non	homogeneous case when � becomes a general
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intensity measure� The total number of points of � in a set B is a Poisson

random variable with mean ��B� and the number of points in disjoint sets

are mutually independent� Therefore� constraints on the number of parent

points can be rephrased as constraints on the total mass ��D� which is also

the mean number of �	points in D� As ��D� is 
nite by assumption� the

total number of points in � is almost surely 
nite as well�

Now� replacing x with � in ��� and taking the expectation of the random

variable thus obtained yields our objective functional that can be written as

f��� � E�

��
�
X
xi��

X
yj�Zx�xi�

���xi� yj�

��
	 � ���

The subscript � under the expectation or probability signs is used to indicate

that the expectation or probability is taken with respect to the distribution of

a Poisson process with intensity measure �� A functional of type ��� �with an

arbitrary power of ��xi� yj�� was considered by Molchanov � Zuyev �����a�

for optimising the locations of stations in telecommunication networks� In

this context� the daughters represent subscribers of the network� the parents

correspond to stations� Writing ��y��� for the minimal distance between y

and a point of �� ��� can be reformulated as

f��� �
mX
j��

E�

�
���yj���



� ���

Note that with positive probability � is empty� in which case the distance

���yj��� in ��� is ill	de
ned� Thus� we must assign some value u to ��yj� ���

Since we are dealing with minimisation of f���� a natural choice for u is the

diameter ofD� i�e� the maximal distance ��x� y� between two points x� y � D�

Since � is a Poisson point process� it is relatively straightforward to com	

pute the expectation in ���� yielding

f��� �
mX
j��

Z u�

�

exp f���Bt����yj� �D�g dt �
�

�



where Bt����yj� is the ball of radius t��� centred at yj� The interested reader

is referred to the Appendix for a derivation of this formula�

The objective functional is de
ned on the set of all 
nite non	negative

measures and can be extended using �
� to signed measures� although with	

out immediate probabilistic interpretation readily available� An important

implication of �
� is that the objective functional is convex in �� that is for

every pair of measures � and �� and for each c � ��� ���

ffc�� ��� c��g � cf��� � ��� c�f��� �

This is easily seen by using the fact that the function � �	 e�� is convex and

observing that convexity is preserved by integration�

Since the value of f��� can be made arbitrarily small as the total mass

of � increases unboundedly� we have to constrain ��D� to some 
xed a 
 ��

Doing so� the minimisation problem can be written as

f��� �	 min � ��D� � a � ���

Further constrains on � may be added to incorporate additional information

about the parents� e�g� by weighing their possible positions with a �cost 

function and considering only those � that do not exceed the total cost� See

Molchanov � Zuyev �����a� for a general framework for optimising function	

als of Poisson point processes�

� An asymptotic solution

Molchanov � Zuyev �����a� suggested a framework of asymptotic analysis of

minimisation problems for functionals on measures with growing total mass�

Referring to Molchanov � Zuyev �����a� for details� consider a sequence of

measures �a� a 
 �� such that �a minimises f��� over all measures with total

mass a� Then under certain technical conditions the normalised intensities

a���a converge to a limit� the so	called high intensity solution !��
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In our context� suppose that the daughter points y have been sampled

from a distribution with probability density py���� perhaps obtained by kernel

smoothing �Bowman � Azzalini� ����� of y� Then the objective function ���

transforms into

f��� �

Z
D

E�

�
���z���

�
py�z� dz � ���

The same functional ��� was considered by Molchanov � Zuyev �����a� in

a telecommunication application� where it was shown that the density of a

high intensity solution !� is proportional to a power of the daughter density"

p	��z� 
 �py�z��
d��d
�� � ���

The interpretation of this result is that if a large number of parent points

are taken into account� they can be sampled from a density proportional to

�py�z��
d��d
��� Such a sample provides a natural initial con
guration for e�g�

the k	mean algorithm or the constrained optimisation problem ���� that can

be further improved using descent methods�

� Steepest descent algorithm

The minimisation of functionals of measures can be done e�ciently using

steepest descent algorithms� as described in Molchanov � Zuyev ������� At

every step� the idea is to move from � to � � � for some suitably chosen

�signed� measure � such that the value of the objective function decreases as

fast as possible and the constraints are not violated� In our case� this means

that the total mass of �� � must be the same as that of ��

The steepness of a particular update from � to � � � is characterised

by the directional derivative of f��� evaluated with respect to �� which is

de
ned by

lim
t��

t��ff��� t��� f���g �

Z
g��z���dz� � ���

�



The function g���� is called the gradient of f���� For the objective function

f��� given by ���� the gradient equals

g��z� � �
mX
j��

Z u�

���yj �z�

exp f���Bt����yj� �D�g dt � ����

A derivation of this expression can be found in the Appendix� Note that the

gradient ���� resembles f��� as in �
�� except for the integration interval�

The steepest descent algorithm iteratively redistributes mass of � in the

direction determined by this gradient� Clearly� to keep the total mass of ���

constant� the added term � must have zero total mass� hence � is necessarily

a signed measure� The size � of a step is controlled by the mass of the positive

�or negative� part of �� To minimise the right	hand side of ��� one should

place an atom of mass � at the minimum of g���� �or distribute it between

several global minima if they exist�� Similarly� the negative mass �� should

ideally be placed at the maximum of g����� which amounts to taking away

an amount � from � at this point� This can seldom be done� however� since

the current � may not have enough mass at this point� if at all� Thus� we

should remove mass from regions where g��z� is large� until an amount �

has been taken� More precisely� Molchanov � Zuyev �����b�� Molchanov �

Zuyev ������ proved that the steepest descent direction � is obtained when

the mass of � is redistributed in such a way that all mass of � is taken from

Dt � fx � D " g��z� � tg for a suitable t � �� and placed at the point

where g� is minimal� The threshold value t can be found from the condition

��Dt� � �� If the equality has no solution� then we choose the smallest t

satisfying ��Dt� � � and remove mass � � ��Dt� by reducing the �	content

of points z � D with g��z� as close as possible to �but smaller than� t�

At the beginning of the algorithm� the step size � is set at some arbitrary

value� Iteratively� in the direction speci
ed by the steepest gradient� � mass

is redistributed in the manner described above� If this step does not lead to a

decrease of the objective function� the step size is reduced and the procedure

��



repeated� Note that since �
� is convex in �� the steepest descent algorithm

converges to the global minimum from every initial state�

It is shown in Molchanov � Zuyev �����a� that a necessary condition for

Problem ��� to have a solution can be formulated as��
�g���z� � c �� � a�e� �

g���z� � c for all z �
����

for some constant c� given that measure �� minimises f��� over all non	

negative measures with the given total mass� The constant c is� in fact� the

Lagrange multiplier for the corresponding constrained optimisation problem�

The necessary condition ���� can be used as a stopping rule for the steepest

descent algorithm described above" stop if over all points in the support

of the current � the variation of g� is a constant c within a predetermined

�small� number 
� and at all other points z in the support of �� g��z� is at

least c� The described algorithm is implemented in Splus and R	languages�

see� e� g�� Venables � Ripley ������ about statistical analysis using Splus#R�

The code is available on the web at

www�stats�gla�ac�uk�$ilya

www�stams�strath�ac�uk�$sergei

and distributed as an R	language bundle mesop� Data sets used in the fol	

lowing examples can be obtained from the same source�

As an illustration� Figure ��� shows several steps of the steepest descent

algorithm applied to a one	dimensional problem on D � ��� �� with y �

f���� ���� ��
� ��

� ���g and the measure�s total mass is 
xed at a � ��� The

parent space is discretised into a grid with mesh size s �in our example

s � ������ and the intensity measure � is atomic and supported on the grid�

Note� however� that the data points y do not necessarily lie on the grid �e�g�

the point ��

 here�� Consider a daughter point yj � y� Then� the inner

��



integrand in the objective functional �
� is a step function in t� with break

points at the squared distances from yj to grid points� Thus� if necessary

rearranging the indices of the grid points in such a way that ��x�� y�� �

��x�� y�� � � � � � ��xn� y��� the integral
R u�

�
expf���Bt����y���D�g dt can be

written as

���x�� y�� �
�
���x�� y��� ���x�� y��



e���fx�g� � � � �

� � ��
�
u� � ���xn� y��



e���fx�g�� ��� ���fxng��

A similar formula holds for the other summands in �
�� and for the gradient�

Therefore� if for each yj a record is kept of the grid points sorted according

to their distance to yj as well as the increments in squared distance� updates

of the gradient and objective functional are easy to perform�

� Examples

In all examples below we used the steepest descent algorithm described in

Section � on the unit square ��� �� � ��� �� in the plane� The measures were

de
ned on a uniform grid with mesh size s � ���� in both directions� The

stopping rule was such that the descent is terminated if the variation of

the gradient over all atoms of � with mass greater than 
a is less than 


multiplied by the total range of the gradient �i�e� the di%erence between its

maximum and minimum�� The descent works fast enough �about one second

per step on a SUN ULTRA �� Workstation ��� MHz� for y consisting of ���

points as in the case study described below� Plausible results are obtained

already for the tolerance level 
 � ���� in about ��� steps� while 
 � ������

requires considerably more steps to be done �in the range of several thousands

depending on the total mass of ���

��
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Figure ���" Several steps of the steepest descent algorithm applied to a one	

dimensional problem on a grid of mesh size �����
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�� Synthetic examples

We analyse a synthetic data set sampled from a stochastic cluster process�

The parents follow a Poisson point process with intensity ��� each parent has

a Poisson number of daughters with mean ��� scattered independently and

uniformly in a disc of radius ��� around the parent� After truncation to the

unit square� the pattern of �� points shown in Figure 
�� was obtained�
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Figure 
��" A synthetic two	dimensional data set�

Figure 
�� shows the results of applying the numerical procedure of the

previous section� The optimal measure is shown for a range of total mass

levels� If the total mass is small in comparison to the number of data points�

the contours of the optimal intensity surface suggest a few large components�

Increasing the total mass� these groups split themselves in smaller clusters�

A more detailed Bayesian analysis based on the cluster process described

above and a repulsive Markov prior can be found in Van Lieshout �������
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Figure 
��" Contour plots of the optimal measures �with varying total mass

a� for the synthetic data set� The contours are taken at the speci
ed levels�

�





�� Redwood data

Figure 
�� shows the locations of redwood seedlings extracted from a larger

data set in Strauss ����
�� The plot suggests aggregation of the seedlings�

which Strauss attributes to the presence of stumps of older redwoods� whose

position has not been recorded� The tree positions shown in Figure 
��

contains those seedlings in region II of Strauss ����
� Figure �� p� ����� a

roughly triangular area containing almost all of the redwood stumps�
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Figure 
��" Locations of redwood seedlings�

In Strauss ����
� a point process model was 
tted to the redwood data�

later shown in Kelly � Ripley ������ to be ill	de
ned� Surprisingly� although

the yet smaller square extracted by Ripley ������ appears frequently in the

spatial statistics literature� the full data set seems to have been reanalysed

only in Van Lieshout ����
�� where a cluster process was 
tted with points

scattered according to a Gaussian distribution around parents that are dis	

tributed according to a repulsive point process model and the posterior in	

��



tensity surface of cluster locations was computed� For the smaller data set

�corresponding to the top left corner of Figure 
��� previous analyses include

Diggle ������� where a Gaussian scatter model with a Poisson parent process

was 
tted using a least squares approach� That yielded an estimated num	

ber of �� stumps� which is implausible from a biological point of view� The

least squares approach does not allow for estimation of cluster positions as

such� Using a uniform distribution for the daughters instead of a Gaussian

one yielded similar results� see Diggle ������� Finally� Lawson ������ 
tted

a similar Gaussian scatter point process� but failing to include a repulsive

parent model led to the implausibly large number of �� parents�

Below we report the results of using the optimisation algorithm for the

Problem ���� Figure 
�� shows contour plots of several optimal measures

with varying total mass a� The choice of a is obviously subjective� and � as

in hierarchical clustering algorithms � we recommend to consider a range of

values� As it can be seen from Figure 
��� for small values of a� a few large

components explain most of the mass in the optimal measure� increasing the

value of a� the support of the optimal measure splits into more and more

groups�

� Discussion

In this paper� we treated partitioning a pattern of points into clusters as

an optimisation problem in the space of measures by assuming the parent

process of cluster centres to be an inhomogeneous Poisson process� Thus�

the output of the steepest descent algorithm is the optimal parent intensity

measure� the contour lines of which provide an indication of the plausible

clusters�

We de
ned the parent and daughter processes on the same space D�

but our approach is equally valid if the parent process were de
ned on some

��
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Figure 
��" Contour plots of measures solving ��� for the Redwood data with

varying total mass a� The levels of contours are speci
ed�
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 D� a modi
cation that is especially useful whenever edge e%ect

are a concern� Also� the Ward style pooled within groups sum of squares

criterion ��� may be replaced by other objective functionals� Additional

analysis is necessary in this case to verify the validity of the conditions for

the asymptotic results outlined in Section � to hold� see Molchanov � Zuyev

�����a� for details�

In contrast to partition or mixture methods� the advantage of modelling

the cluster centres by a point process is that the number of cluster centres

need not be set in advance �nor be decided by ad hoc thresholding as in

hierarchical clustering�� Furthermore� since the objective functional �
� is

convex� a global optimum is reached� rather than the locally optimal parti	

tions produced by hierarchical or partition	based techniques� It should be

noted that our model assumptions are very mild indeed� Alternatively� a

parametric Markov point process model could be employed� allowing esti	

mation of the model parameters� the posterior parent intensity measure and

cluster labels� However� the computational cost is higher than for our steep	

est descent algorithm� relying on Monte Carlo or coupling from the past

methods� cf� Van Lieshout ����
�� Van Lieshout ������ and Van Lieshout �

Baddeley ����
� or Lund ������ for the special case where clusters consist

of at most a single point� A similar remark can be made for Bayesian mix	

ture models with a random number of components such as those in Green �

Richardson �������

Finally� the optimal measure �� can be used as input to a subsequent

more detailed analysis� For instance� the spatial Markov model approach

requires a reference Poisson point process� and �� would be a more natural

candidate for the intensity measure than the usual non	informative Lebesgue

measure�

��



Acknowledgements

Van Lieshout�s work was carried out under project PNA��� �Stochastic ge	

ometry�� The research of the 
rst two authors was funded by a British

Council#NWO Research grant JRP
��#BR��	����

Appendix� The objective function and the gradient�

The objective function� Here we compute the expectation of

F ��� �

Z
D

���y�����dy�

if � is an inhomogeneous Poisson process on D with intensity measure �����

and ���� denotes a 
nite measure on D� For ���� ���� assigns equal mass � to

each data point yj� j � �� � � � � m� Recall that ��z��� is set to the diameter u

of D if � is empty� Then

E�F ��� � E�

�
u� �I���

�
��D� � E�

�Z
D

���y��� �IX ��� ��dy�

�

� u� e���D���D� �

Z
D

Z 	

�

pr�f�
��y��� 
 t� � �� �g dt ��dy�

� u� e���D���D�

�

Z
D

Z 	

�

pr��� �Bt����y� � �� � � fD nBt����y�g �� �� dt ��dy�

� u� e���D���D� �

Z
D

Z 	

�

e��fBt���
�y�
Dg

h
�� e��fDnBt���

�y�g
i
dt ��dy� �

Note that when t exceeds u�� the inner integrand vanishes� Thus�

f��� � E�F ��� � u� e���D� ��D� �

Z
D

Z u�

�

h
e��fBt���

�y�
Dg � e���D�
i
dt ��dy�

�

Z
D

Z u�

�

e��fBt���
�y�
Dgdt ��dy� �

��



The gradient� Here we calculate the gradient� Firstly� the directional

derivative of f��� can be written as

lim
s��

s��

�Z
D

Z u�

�

h
e��fBt���

�y�
Dg�s�fB
t���

�y�
Dg � e��fBt���
�y�
Dg

i
dt ��dy�

�

� �

Z
D

Z u�

�

e��fBt���
�y�
Dg�fBt����y� �Dg dt ��dy�

To express f��� as an integral with respect to ����� note thatZ u�

�

e��fBt���
�y�
Dg�fBt����y� �Dg dt �

Z u�

�

e��fBt���
�y�
Dg

Z
z�D� ��z�y��t���

��dz� dt

�

Z
D

��dz�

Z u�

���z�y�

e��fBt���
�y�g dt �

Therefore� the gradient of f��� is given by

g��z� � �

Z
D

Z u�

���z�y�

e��fBt���
�y�
Dg dt ��dy� �
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