Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Aggregate and fractal tessellations

Tchoumatchenko, K. and Zuev, S. (2001) Aggregate and fractal tessellations. Probability Theory and Related Fields, 121 (2). pp. 198-218. ISSN 0178-8051

[img]
Preview
PDF (strathprints004605.pdf)
strathprints004605.pdf

Download (377kB) | Preview

Abstract

Consider a sequence of stationary tessellations {‹n}, n=0,1,..., of  d consisting of cells {Cn(xin)}with the nuclei {xin}. An aggregate cell of level one, C01(xi0), is the result of merging the cells of ‹1 whose nuclei lie in C0(xi0). An aggregate tessellation ‹0n consists of the aggregate cells of level n, C0n(xi0), defined recursively by merging those cells of ‹n whose nuclei lie in Cnm1(xi0). We find an expression for the probability for a point to belong to atypical aggregate cell, and obtain bounds for the rate of itsexpansion. We give necessary conditions for the limittessellation to exist as nMX and provide upperbounds for the Hausdorff dimension of its fractal boundary and forthe spherical contact distribution function in the case ofPoisson-Voronoi tessellations {‹n}.