Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Stochastic models for the spread of HIV among intravenous drug users

Greenhalgh, David and Lewis, Fraser (2001) Stochastic models for the spread of HIV among intravenous drug users. Stochastic Models, 17 (4). pp. 491-512. ISSN 1532-6349

Full text not available in this repository. Request a copy from the Strathclyde author


In this paper we examine the spread of HIV when this disease is transmitted through the random sharing of contaminated drug injection equipment. We first model the spread of disease using a standard set of behavioral assumptions discussed by Kaplan [1]. We demonstrate that deterministic and stochastic models based on these assumptions behave very similarly and use a branching process approximation to show that if the basic reproductive number, R0, is less than or equal to unity then the disease will always become extinct. If R0>1 then, although the disease might take off, it is still possible for it to die out, and we calculate the probability of extinction. This is not of the simple form R0-a, where a is the initial number of infectious addicts, which might have been expected from Whittle's stochastic threshold theorem [2]. We next discuss an extended model that incorporates a three-stage AIDS incubation period and again examine a branching process approximation. We finally explore the extent to which control strategies such as needle exchange and improved needle cleaning can reduce the risk of a HIV epidemic before concluding with a brief discussion.