Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The general mixing of addicts and needles in a variable-infectivity needle-sharing environment

Greenhalgh, D. and Lewis, F. (2002) The general mixing of addicts and needles in a variable-infectivity needle-sharing environment. Journal of Mathematical Biology, 44 (6). pp. 561-598. ISSN 0303-6812

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we develop and analyse a model for the spread of HIV/AIDS amongst a population of injecting drug users. The model we discuss focuses on the transmission of HIV through the sharing of contaminated drug injection equipment and in particular we examine the mixing of addicts and needles when the AIDS incubation period is divided into three distinct infectious stages. The impact of this assumption is to greatly increase the complexity of the HIV transmission mechanism. We begin the paper with a brief literature review followed by the derivation of a model which incorporates three classes of infectious addicts and three classes of infectious needles and where a general probability structure is used to represent the interaction of addicts and needles of varying levels of infectivity. We find that if the basic reproductive number is less than or equal to unity then there exists a globally stable disease free equilibrium. The model possesses an endemic equilibrium solution if the basic reproductive number exceeds unity. We then conduct a brief simulation study of our model. We find that the spread of disease is heavily influenced by the way addicts and needles of different levels of infectivity interact.