Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Assessing the effect of using biomechanics visualisation software for ankle-foot orthosis tuning in early stroke

Carse, Bruce and Bowers, Roy and Loudon, David and Meadows, Barry and Rowe, Philip (2013) Assessing the effect of using biomechanics visualisation software for ankle-foot orthosis tuning in early stroke. In: 22nd Annual Meeting of the European Society for Movement Analysis in Adults and Children, 2013-09-02 - 2013-09-07.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Gait dysfunction is the most commonly reported post-stroke disability [1]. One of the interventions that can assist with stroke gait rehabilitation is an ankle-foot orthosis (AFO) [2]. When an AFO has been made a fitting and tuning session (AFO-F/T) is required to ensure it is optimally aligned for the patient in question using different heights of heel wedge. This causes subtle biomechanical changes in the gait patterns in terms of ground reaction force vector alignment and lower limb segment orientation [3], which are not necessarily perceptible to the naked eye. While 3D gait analysis can offer a method of measuring such changes, it is also thought to be somewhat inaccessible [4]. The hypothesis is that bespoke biomechanics visualisation software to make 3D gait analysis data more interpretable (see Figure 1 for sample visualisations), and would improve the process of AFO tuning for stroke patients to provide better patient outcomes.