Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

An evaluation of semi-automatic approaches to contour segmentation applied to fungal hyphae

Inglis, Iain M. and Gray, Alison J. (2001) An evaluation of semi-automatic approaches to contour segmentation applied to fungal hyphae. Biometrics, 57 (1). pp. 232-239. ISSN 0006-341X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Semiautomatic image analysis techniques are particularly useful in biological applications, which commonly generate very complex images, and offer considerable flexibility. However, systematic study of such methods is lacking; most research develops fully automatic algorithms. This paper describes a study to evaluate several different semiautomatic or computer-assisted approaches to contour segmentation within the context of segmenting degraded images of fungal hyphae. Four different types of contour segmentation method, with varying degrees and types of user input, are outlined and applied to hyphal images. The methods are evaluated both quantitatively and qualitatively by comparing results obtained by several test subjects segmenting simulated images qualitatively similar to the hyphal images of interest. An active contour model approach, using control points, emerges as the method to be preferred to three more traditional approaches. Feedback from the image provider indicates that any of the methods described have something useful to offer for segmentation of hyphae.