Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Confined growth of a vapour bubble in a capillary tube at initially uniform superheat: experiments and modelling

Kenning, D.B.R. and Wen, D.S. and Das, K.S. and Wilson, S.K. (2006) Confined growth of a vapour bubble in a capillary tube at initially uniform superheat: experiments and modelling. International Journal of Heat and Mass Transfer, 49 (23-24). pp. 4653-4671. ISSN 0017-9310

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Bubble growth was triggered in a capillary tube closed at one end and vented to the atmosphere at the other and initially filled with uniformly superheated water. Measurements of the rate of axial growth and the varying pressure at the closed end were used to test under these simplified conditions assumptions employed in one-dimensional models for bubble growth applicable to the more complex conditions of confined-bubble flow boiling in micro-channels. Issues included the thickness of the liquid films round confined bubbles and changes in saturation temperature due to the changes in pressure generated by bubble motion. Modelling features requiring further attention were identified, such as the possibility of "roll-up" of the liquid film due to a large dynamic contact angle.