Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A spectral theory for a λ-rational Sturm-Liouville problem

Adamjan, V. and Langer, Heinz and Langer, M. (2001) A spectral theory for a λ-rational Sturm-Liouville problem. Journal of Differential Equations, 171 (2). pp. 315-345. ISSN 0022-0396

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We consider the regular Sturm-Liouville problem y″−py+(λ+q/(u−λ)) y=0, which contains the eigenvalue parameter rationally. Under certain assumptions on p, q, and u it is shown that the spectrum of the problem consists of a continuous component (the range of the function u), discrete eigenvalues, and possibly a finite number of embedded eigenvalues. In the considered situation the continuous spectrum is absolutely continuous, and explicit formulas for the spectral density and the corresponding Fourier transform are given.